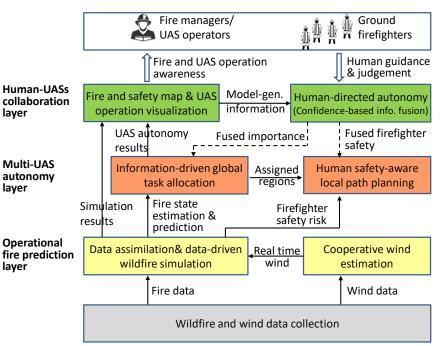
Collaborative Autonomy and Safety for Teamed Human – Unmanned Aircraft Systems in Fast Evolving Wildfire Environment


Award No#: USDA 2019-67021-29011, 2019-67021-28993, 2019-67021-28992 Xiaolin Hu (Georgia State University), Ming Xin (University of Missouri), Haiyang Chao (University of Kansas)

Challenge

 Transforming wildfire management by enabling operational wildfire spread prediction and situation awareness for firefighters using a team of UASs.

Solution

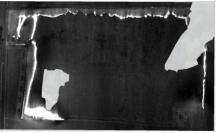
- Cooperative fire and wind sensing and advanced data assimilation.
- Multi-UAS coordination and path planning in fast-evolving wildfire env.
- Human-directed autonomy to support teamed human-UASs collaboration.

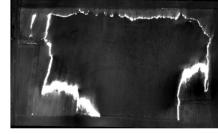
Scientific Impact

- Fill the critical gap of real time wind and fire data collection.
- New information-driven multi-UAS coordination and safetyaware path planning algorithms.
- New approaches of humandirected autonomy for human-UAS collaboration.

Broader Impact:

- Transform wildfire management through human-UASs collab.
- Education programs and outreach workshops.

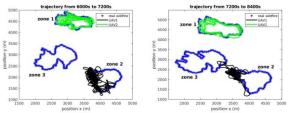

Project Highlights

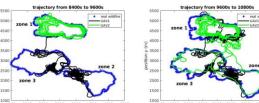


UAS platform and wildland fire monitoring

Loop 2 (ending time: 34min 14s)

Loop 3 (ending time: 38min 33s)




UAS sensing and fire spread simulation

UAS Path Planning

- Multiple-fire monitoring
- Maximize information collection.
- Collision/obstacle avoidance
- Minimizing the time without fires in the UAV's field-of-view

Education & outreach

- Undergraduate student UAS design and test (left)
- Local communities prescribed burn events (right)
- UAS Integration for Fire Operation Workshop (2021)

2022 NRI & FRR Principal Investigators' Meeting April 19-22, 2022