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Challenge
• Ensure safe and dependable 

operation of  fleets of AVs or 
drones in a fast-paced dense 
urban environments

Scientific Impact
• Distributed optimization in general
• Sensor networks, social networks, 

IoT

Solution
1. Deep Net-based object 

detection, segmentation, and 
classification

2. Distributed multi-target 
tracking algorithms for 
scalability

3. Distributed, semantically 
aware planning for safe 
navigation

Broader Impacts
• Improve robot safety
• Support student mentorship at all 

levels (undergrad, MS, PhD)
• Inclusion in UG and G courses
• Lab tours for K-12 students
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Abstract— We present a scalable distributed target track-
ing algorithm based on the alternating direction method of
multipliers that is well-suited for a fleet of autonomous cars
communicating over a vehicle-to-vehicle network. Each sensing
vehicle communicates with its neighbors to execute iterations
of a Kalman filter-like update such that each agent’s estimate
approximates the centralized maximum a posteriori estimate
without requiring the communication of measurements. We
show that our method outperforms the Consensus Kalman
Filter in recovering the centralized estimate given a fixed
communication bandwidth. We also demonstrate the algorithm
in a high fidelity urban driving simulator (CARLA), in which 50
autonomous cars connected on a time-varying communication
network track the positions and velocities of 50 target vehicles
using on-board cameras.

I. INTRODUCTION

A key challenge in integrating autonomous vehicles into
the transportation infrastructure is ensuring their safe opera-
tion in the presence of potential hazards, such as human-
operated vehicles and pedestrians. However, tracking the
paths of these safety-critical targets using on-board sensors
is difficult in urban environments due to the presence of
occlusions. Collaborative estimation among networked au-
tonomous vehicles has the potential to alleviate the limi-
tations of each vehicle’s individual perception capabilities.
Networked fleets of autonomous vehicles operating in urban
environments can collectively improve the safety of their
planning and decision-making by collaboratively tracking the
trajectories of nearby vehicles in real-time.

Constraints on communication and computation impose
fundamental challenges on collaborative tracking. Given
limited communication bandwidth, information communi-
cated between vehicles must be succinct and actionable.
Communication channels must also be free to form and
dissolve responsively given the highly dynamic nature of
urban traffic. Relying on centralized computation is neither
robust to single points of failure, nor communication-efficient
in disseminating information to those vehicles to whom it
is relevant. Rather, a fully-distributed scheme that exploits
the computational and communication resources of an au-
tonomous fleet is crucial to reliable tracking.
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Fig. 1. Autonomous vehicles (in green) track the trajectory of target
vehicles (in blue and red) with images from on-board cameras at a four-way
intersection using our algorithm.

In this paper, we consider the problem of distributed target
tracking in a fleet of vehicles collaborating over a dynamic
communication network, posed as a Maximum A Posteri-
ori (MAP) optimization problem. Our key contribution is
a scalable Distributed Rolling Window Tracking (DRWT)
algorithm derived from the Alternating Direction Method
of Multipliers (ADMM) distributed optimization framework.
The algorithm consists of closed-form algebraic iterations
reminiscent of the Kalman filter and Kalman smoother, but
guarantees that the network of vehicles converge to the
centralized MAP estimate of the targets’ trajectories over
a designated sliding time window. We show in extensive
simulations that our DRWT algorithm converges to the
centralized estimate orders of magnitude faster than a state-
of-the art Consensus Kalman Filter for the same bandwidth.
We demonstrate our algorithm in a realistic urban driving
scenario in the CARLA simulator, in which 50 autonomous
cars track 50 target vehicles in real time using only seg-
mented images from their on-board cameras.

The paper is organized as follows. We give related work
in Sec. II and pose the distributed estimation problem in
Sec. III. In Sec. IV, we formulate the centralized MAP
optimization problem, and we derive our DRWT algorithm
in Sec. V. Sec. VI presents results comparing our DRWT
to the Consensus Kalman Filter, and describes large-scale
simulations in a CARLA urban driving scenario.

II. RELATED WORK

Several approaches have previously been applied to solv-
ing distributed estimation problems. In distributed filtering
methods, consensus techniques enable the asymptotic diffu-
sion of information throughout the communication network,
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Kalman smoothing equations while fusing estimates from
each sensor’s neighbors.

VI. SIMULATION RESULTS

A. Performance Comparison
We compare the performance of the DRWT method in

Algorithm 1 to the CKF in a distributed estimation problem
involving a static network with |V| = 100 and |E| = 400.
All sensors acquire noisy measurements of the target at
each time step, and perform DRWT with T = 1. During
each estimation phase, the same bandwidth limitations are
imposed on the CKF and DRWT. We benchmark both
distributed methods against the centralized MAP estimate.

Fig. 2. Convergence of distributed estimation methods to the centralized
estimate as a function of bits of communication passed on a 100 node, 400
edge network for a single timestep’s estimate.

Fig. 3. Mean squared error of estimation methods on a 100 node, 400
edge network with respect to ground truth, averaged over 2000 Monte Carlo
simulations. Solid lines show the indicate mean squared error, while dashed
lines represent estimated covariances, computed as trace(P̂).

Results from 2000 Monte Carlo simulations of this sce-
nario show that DRWT method outperforms the CKF. DRWT
is significantly more communication-efficient, as sensors
communicate only their target estimates. From Figure 2,
DRWT yields better convergence to the centralized estimate
compared to the CKF method as a function of the total
number of communication bits per node. As Figure 3 shows,
the improved convergence of the DRWT contributes to im-
proved estimation performance over entire trajectories. The
estimated trajectories and covariances of the DRWT method
closely match the centralized estimates. The CKF does not
track the centralized estimate as closely and is also more
significantly overconservative in its estimate.

B. CARLA Simulations
We demonstrate our algorithm in a scenario involving

a network of 50 sensor vehicles and 50 target vehicles
within CARLA, a simulation test-bed for autonomous driving
systems. For the simulation trials, each sensor vehicle is
equipped with a forward and a backward-facing camera,
each with a 90� field of view. As shown in Figure 4, sensor
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