

Games of Strategy For modeling conflict and cooperation

Schwartz/Teneketzis

CPS Infrastructures : Effect of Technological Advancements

- * Conflict and cooperation of CPS providers: an increase in
 - Cooperation (driven by technological complementarities)
 - * Competition (driven by availability of numerous substitutes)

Complex parties' incentives \Leftrightarrow multiple externalities

- * The role of central authority: improving parties' incentives
 - Higher competition and conflict <> importance of resolving conflicts
 - ∗ Threats of security failures ⇔ Importance of investing in security

Central authority's role: conflict mitigation, coordination, and regulation

CPS viewed as two-sided market : Models both Conflict and Cooperation

- Increased role of Central Authority : necessity to harmonize interactions and improve CPS robustness
 - Managers of infrastructure (platform)
 - Producers (suppliers)
 - Consumers (individual users)
 - * Central authority (coordinator/regulator)
- * Example: Electric grid
 - * Platform Managers: Transmission/Distribution operators
 - Suppliers: Generation plants
 - * Users: Customers (large and small)
 - * Coordinator: ISO

Today's talk: Two game-theoretic models

- Resource allocation in strategic multi-battlefield conflicts:
 Our focus is to solve Blotto games with
 - possibility to add extra fields and alliances
 - possibility to form alliances (cooperation)
- * Network design with random faults and strategic attacks
 - Arbitrary (fixed) network structure (a given network topology)
 - * Defender faces system failures, and cannot distinguish between
 - * Random faults (reliability failures)
 - * Strategic attacks (security failures)

An age-old quest in Game theory: How to allocate scarce resources?

- Under given assumptions on
 - * information
 - order of moves (simultaneous vs sequential)
 - * player actions: (discreet vs continuous)
 - * player objective: (plurality vs majority)
 - * players: symmetric (homogenous) vs asymmetric (heterogeneous)
 - * game: one-shot vs repeated / dynamic
- * Original Colonel Blotto setup: deceptively trivial benchmark

Colonel Blotto setup

scare resource (time, money, effort) R

- battlefields n = 3 (town, state, node, server, ...) j = 1, 2, ... n
- the values of battlefields: identical $v_i = v$
- contest (tournament) of two identical players, i = A, B or i = 1, 2 or i = α, β
- order of moves: simultaneous
- player actions: continuous
- player objective (*plurality* vs *majority*)
- Players are symmetric (identical) $R_{\alpha} = R_{\beta}$

Applications of Blotto

traditional warfare

- 1 routing choices for supply support
- 2 across distinct battlefields

politics (elections under different rules)

- optimization of fund raising strategy (time allocation)
- optimization of resources during the contest
- Economics (IO) [Corporate strategy for multi-product markets]
 - research and development (R&D)
 - resource allocation for advertizement
 - Our research plan:

Blotto for CPS infrastructure protection & defense

Colonel Blotto: Identical players

- Two-players constant-sum complete information static game
- Identical (symmetric) resource case [formulated Borel 1921]
- Battlefields: identical value
- N battlefields (N = 3) [solved Borel & Ville (1938)]
- N battlefields (N > 3) [Gross & Wagner (1950)]

Colonel Blotto: Non-identical players

- Player α has resource α
- Player β has resource $\beta < \alpha$
- Battlefields: identical value
- with (*N* = 2) [Gross & Wagner (1950)]
- with (N > 2)[Roberson (2006), Kvasov (2007)]

Who wins the battlefield?

In a generic case, Colonel Blotto game admits no pure strategy equilibrium. CSF is a probability for player i ($i = \alpha, \beta$) to win each contest j (j = 1, ..., n), and let $x_{i,j}$ and $x_{-i,j}$ player i resources (investments) for contest j, other player(s) resources for j

$$p(x_{i,j}, x_{-i,j}) = \frac{x_{i,j}}{x_{i,j} + x_{-i,j}}$$

If noise is present, and $m \ge 0$ some noise is present, with m = 0 – all is noise, investments are irrelevant, if a higher *m* noise decreases.

Payoffs

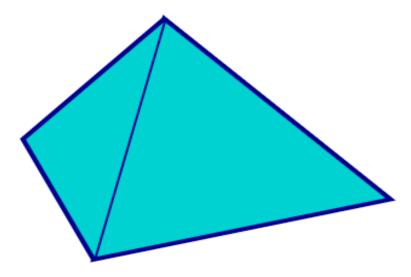
- Player A decides on the allocation of resources across the battlefields **a** = {α₁,..., α_N}
- Player B, decides on $\mathbf{b} = \{\beta_1, \dots, \beta_N\}$

• Constraint Regions: $\mathcal{A} := \left\{ \mathbf{a} : \sum_{i=1}^{N} \alpha_i \leq \alpha \right\}$ and $\mathcal{B} := \left\{ \mathbf{b} : \sum_{i=1}^{N} \beta_i \leq \beta \right\}$

- On each battlefield, player with maximum resource wins and receives a payoff $\frac{1}{N}$
- If equal resource on a battlefield, both player share the payoff, that is, each player receives a payoff ¹/_{2N}

Overview of Results

 \mathcal{A} and \mathcal{B} looks like a solid simplex



- No Nash equilibrium in pure strategies
- Nash equilibrium exists in mixed strategies with unique player payoffs (Roberson 2006)

Measures $\mu_i \in \wp(\mathbb{R}^N_+)$ such that $supp(\mu_A) \subset \mathcal{A}$ and $supp(\mu_B) \subset \mathcal{B}$

Results

The payoff functions are expressed as

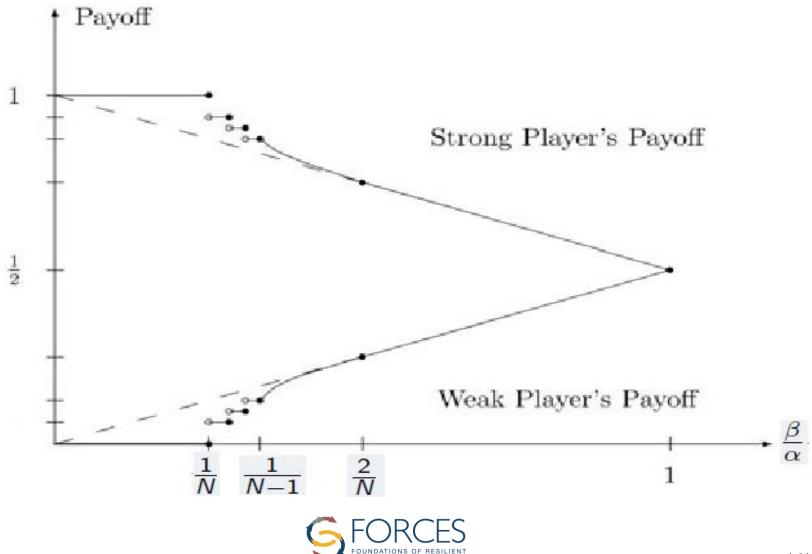
$$J_{i}(N,\mu_{A},\mu_{B}) = \sum_{j=1}^{N} \frac{1}{N} \int_{0}^{\infty} \pi_{\#}^{j} \mu_{-i}([0,x)) \pi_{\#}^{j} \mu_{i}(dx)$$

Payoffs dependent on the marginal distributions on the battlefields

Main Result for $\alpha \leq \beta$

Case	Player A's Payoff	Player B's Payoff
$\frac{2}{N} \leqslant \frac{\beta}{\alpha} \leqslant 1$	$1-rac{\beta}{2\alpha}$	$\frac{\beta}{2\alpha}$
$\frac{1}{N-1} \leq \frac{\beta}{\alpha} < \frac{2}{N}$	$1-\frac{2}{N}+\frac{2\alpha}{N^2\beta}$	$\frac{2}{N} - \frac{2\alpha}{N^2\beta}$
$\frac{1}{N} \leqslant \frac{\beta}{\alpha} < \frac{1}{N-1}$	complicated expression	1-comp. expr.
$\frac{\beta}{\alpha} < \frac{1}{N}$	1	0

Graphical Representation



BEB-PHYSICAL SYSTEMS

Proof Outline

$$\begin{aligned} J_i(N, \mu_A, \mu_B) &= \sum_{j=1}^N \frac{1}{N} \int_0^\infty \pi_{\#}^j \mu_{-i}([0, x)) \pi_{\#}^j \mu_i(dx) \\ \text{such that} \qquad supp(\mu_A) \subset \mathcal{A}, supp(\mu_B) \subset \mathcal{B} \end{aligned}$$

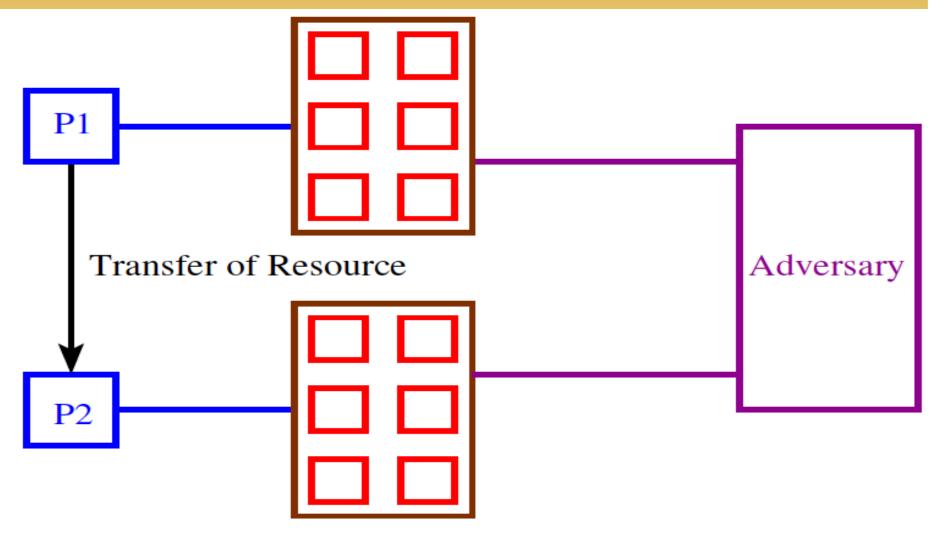
- Three steps in the proof
- Step 1: Find the reaction curves of the players
 - For a fixed strategy of one player, marginal distribution on each battlefield?
- Step 2: Equilibrium marginal distributions on the battlefields?
- Step 3: Is there a joint distribution that satisfies the constraint on supp(µi)

Marginal distributions at Nash Equilibrium

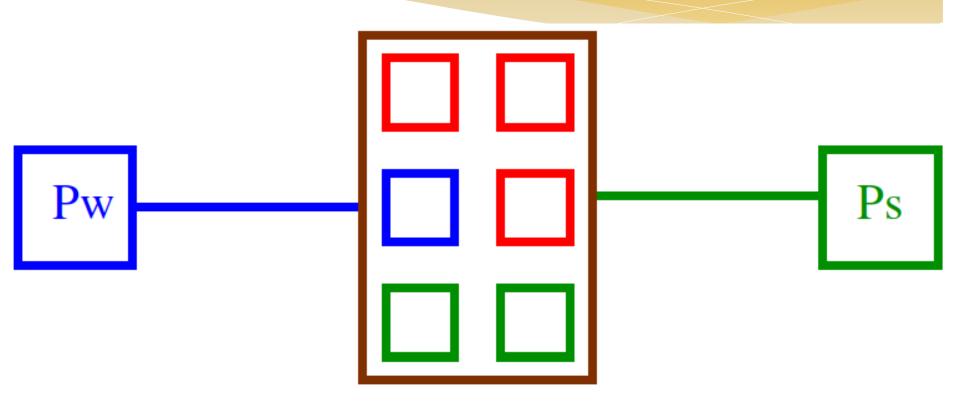
Assume $\frac{2}{N} \leq \frac{\beta}{\alpha} \leq 1$ $\pi^J_{\#}\mu^{\star}_{\mathcal{A}}([0,X))$ $\pi^J_{\#}\mu^{\star}_B([0,X))$ _ β α Х Х Rβ ²_Nβ

Joint distributions μ_1 and μ_2 are constructed using the marginal distributions in the paper

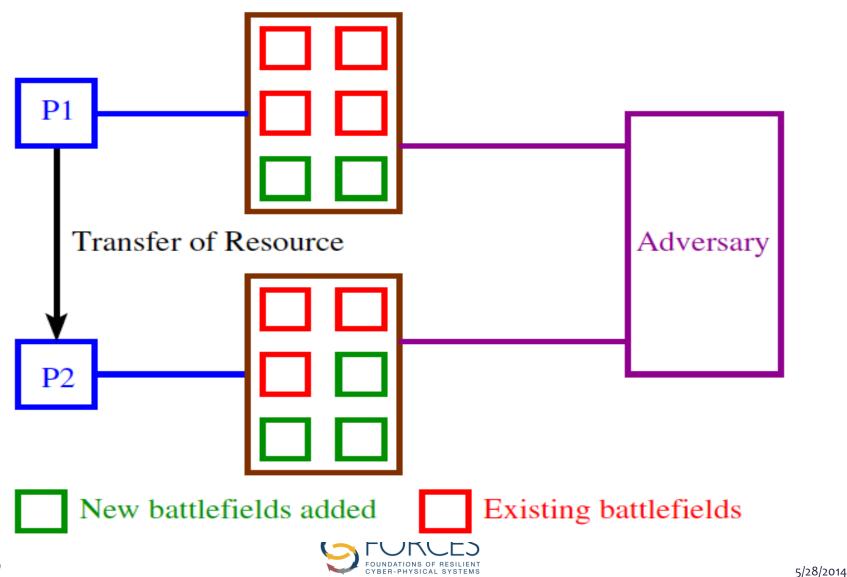
Extension I: Coalitional Colonel Blotto



Extension II: Colonel Blotto with Endogenous Battle fields



Our focus: Coalitional Colonel Blotto with Endogenous Battle Fields



Summary of Results on Blotto Games

- Blotto Games provide key insights into resource allocation
- Generically, Nash equilibrium only in mixed strategies
- Adding battlefields tend to be beneficial to players if it is "cheap enough"
- Voluntary coalitions may be beneficial to players due to effects on equilibrium behavior of the adversary
- Our work
 - We generalizes two extensions
 - provides characterization of Nash equilibrium in certain parameter regions

Network Design Game for CPS

A problem of information deficiency

Due to prohibitive costs of determining the cause of a failure, reliability and security failures are frequently indistinguishable.

Game with reliability-security failures

- Network: Undirected weighted graph G = (V, E, w)
- Network manager: defender
- Failures:
 - Reliability failure R: Due to *Nature*/random fault (π)
 - Security failure S: Due to a strategic attack (1π)
- How should defender design his defenses?

Reliability and Security Failures

Game with reliability-security failures

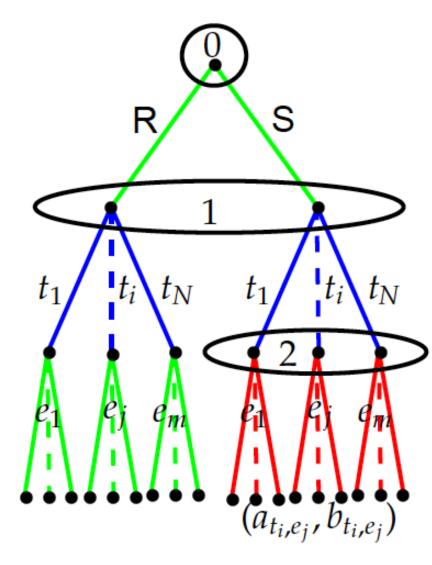
- Network manager: defender
- Failures:
 - Reliability R: random faults/Nature (P(R) = π)
 - Security S: strategic attacker P(S) = 1 - π

Failure probability of an edge $e \in E$:

$$\mathsf{P}(\mathsf{f}_{e}) = \pi \gamma_{e} + (1 - \pi) \beta_{e}, \quad \forall e \in E,$$

• $\gamma_e = P(f_e | R), \beta_e = P(f_e | S)$ • Fault probabilities: $\gamma = (\gamma_{e_1}, \dots, \gamma_{e_i}, \dots, \gamma_{e_m})^T$

Attack probabilities: $\beta = (\beta_{e_1}, \dots, \beta_{e_i}, \dots, \beta_{e_m})^{\mathsf{T}}$



Network Design Game

Attacker-Defender subgame

- Defender: chooses a spanning tree $t \in \mathscr{T}$
- Attacker: chooses an edge e ∈ E

Nature-Defender subgame

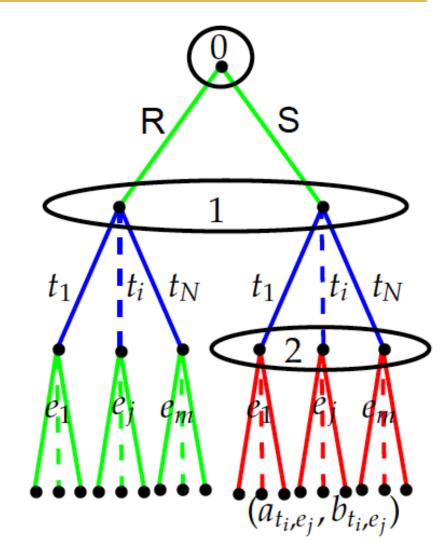
- Defender: chooses a spanning tree $t \in \mathscr{T}$
- Nature: given failure prob. γ_e over edges

Attacker-Nature-Defender game

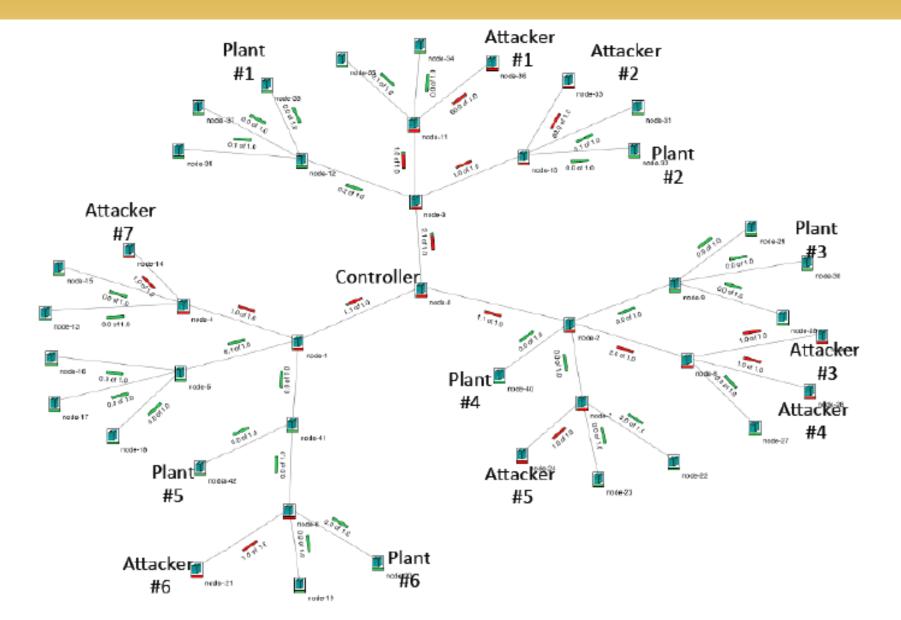
Imperfect information: defender faces aggregate failure probabilities:

$$\mathsf{P}(\mathsf{f}_{e}) = \underbrace{\pi \gamma_{e}}_{\text{reliability}} + \underbrace{(1-\pi)\beta_{e}}_{\text{security}}$$

- Common knowledge: π and γ .
- How does Nash Eq. depend on $\pi \& \gamma$?



Application



Summary of the talk

- Strategic resource allocation (Blotto games):
 We characterize equilibria of asymmetric Blotto game with
 - (i) Endogenous number of battlefields
 - (ii) Player alliances
- Network design with security and reliability failures:
 We find all equilibria for a game with
 - (i) General network topology and values of the nodes
 - (ii) Network operator knows only the relative frequencies of random faults and strategic attacks

