
Effect of Information in Bayesian Congestion Games

Manxi Wu, Saurabh Amin, Asuman Ozdaglar

MIT
FORCES All Hands Meeting, Berkeley

Aug. 23rd.



Motivation

I Inherent heterogeneities in both access and accuracy of TIS

I Asymmetrically informed travelers choose routes based on private beliefs

I Our work is related to well-known literature on congestion game and value
of information.

I Our work is also related to the recent papers: Acemoglu et al. (2016),
Krichene et al. (2016), Ratliff et al. (2016)



Outline

Information penetration effects qualitative properties of equilibrium outcome.



Motivating Example

c s1 (fr1 ) =

{
αa

1fr1 + b, s = a,
αn

1fr1 + b, s = n.

c2(fr2 ) = α2fr2 + b,

αn
1 < α2 < αa

1, D = 1.

I Population 1 is completely informed, population 2 has no information

Figure: Effect of information penetration
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Model

I µi (s, t−i |t i ): interim belief of type t i obtained from common prior:

µ
i (s, t−i |t i ) =

π(s, t i , t−i )

Pr(t i )
, ∀s ∈ S, ∀t−i ∈ T −i

I Expected cost of route r ∈ R based on the interim belief µi (s, t−i |t i ):

E[cr (q)|t i ] =
∑
s∈S

∑
t−i∈T−i

∑
e∈r

µ
i (s, t−i |t i )cse (we(t i , t−i )), ∀t i ∈ T i

, ∀i ∈ I, ∀r ∈ R.
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Bayesian Wardrop Equilibrium

I Feasible strategy set Q(λ):∑
r∈R

qi
r (t

i ) = λiD, ∀i ∈ I, t i ∈ T i ,

qi
r (t

i ) ≥ 0, ∀r ∈ R, i ∈ I, t i ∈ T i .

I A strategy profile q∗ ∈ Q(λ) is a Bayesian Wardop Equilibrium (BWE) if
for any i ∈ I and t i ∈ T i :

∀r ∈ R, q∗ir (t i ) > 0 ⇒ E[cr (q
∗)|t i ] ≤ E[cr′ (q

∗)|t i ], ∀r
′
∈ R.

I Equilibrium population cost: expected cost of travelers in one population

C∗i (λ)
∆
=

1

λiD

∑
t i∈T i

Pr(t i )
∑
r∈R

E[cr (q
∗)|t i ]q∗ir (t i ).

I Equilibrium average cost: expected cost of travelers in all populations

C∗(λ) =
∑
i∈I

λiC∗i (λ).
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Weighted Potential Game

I Game Γ is a weighted potential game:

Φ (q)
∆
=
∑
s∈S

∑
e∈E

∑
t∈T

π (s, t)

∫ ∑
r3e

∑
i∈I qir (t i )

0

c se (z)dz ,

where γ(t i ) = Pr(t i ).

I A strategy profile q ∈ Q∗(λ) if and only if it is an optimal solution of the
following convex optimization problem:

min Φ(q)

s.t. q ∈ Q(λ),
(OPT-Q)

I The equilibrium edge load w∗(λ) is unique.



Q(λ) → F(λ)

It is hard to characterize how Q∗(λ) changes with λ directly from (OPT-Q).
Key step: feasible strategy set Q(λ) −→ F(λ) feasible route flow set:

We change (OPT-Q) to (OPT-F).
Equilibrium route flows can be computed as optimal solutions in (OPT-F).



(OPT-F)

I Step 1: Feasible route flow set F(λ):

fr (t
i , t−i )− fr (t̃

i , t−i ) = fr (t
i , t̃−i )− fr (t̃

i , t̃−i ), (1)

∀r ∈ R, ∀t i , t̃ i ∈ T i , ∀t−i , t̃−i ∈ T −i , ∀i ∈ I,∑
r∈R

fr (t) = D, ∀t ∈ T , (2)

fr (t) ≥ 0, ∀r ∈ R, ∀t ∈ T , (3)

D−
∑
r∈R

min
t i∈T i

fr (t
i , t−i ) ≤ λiD, ∀t−i ∈ T −i , ∀i ∈ I, (4)
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D−
∑
r∈R

min
t i∈T i

fr (t
i , t−i ) ≤ λiD, ∀t−i ∈ T −i , ∀i ∈ I. (4)

Impact of Information:

J i (f ) = D−
∑
r∈R

min
t i∈T i

fr (t
i , t−i ) =

∑
r∈R

max
t i∈T i

(
qi
r (t̂

i )− qi
r (t

i )
)

Impact of information is the summation over all r of the maximum change
in population i’s demand on r when the signal changes from t̂ i to any
other types



(OPT-F)

I Step 1: Feasible route flow set F(λ):

Constraints (1)-(3) are independent of λ

J i (f ) ≤ λiD, ∀i ∈ I. (4)

(4-i): λi effects the equilibrium by bounding the impact of information on
population i
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I Step 2: A feasible route flow f ∈ F∗(λ) if and only if it is optimal solution
of:

min Φ̂(f ) =
∑
s∈S

∑
e∈E

∑
t∈T

π (s, t)

∫ ∑
r3e fr (t)

0

c se (z)dz ,
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(OPT-F)

I (OPT-F) is a convex optimization program



Equilibrium Characterization: Change λ Directionally

Consider any two populations i and j , and the size vector of the remaining
populations λ−ij =

(
λk
)
k∈I\{i,j}. Total size |λ−ij | =

∑
k∈I\{i,j} λ

k .

Figure: Change relative size between population i and j

I 0 ≤ λi ≤ λ̄i ≤ 1− |λ−ij |, both can be computed from convex optimization
in polynomial time

I The impact of information on the minor population is limited by its size:
In regime Λij

1 , population i is minor, J i (f ∗) = λiD
In regime Λij

3 , population j is minor, J j(f ∗) = λjD

I In the middle regime Λij
2 , the impact of information is not limited by the

size of either population



Equilibrium Characterization: Change λ Directionally

Two side regimes: Λij
1 , Λij

3

I The minor population has lower
cost:
In regime Λij

1 , C∗i (λ) < C∗j(λ)
In regime Λij

3 , C∗i (λ) > C∗j(λ)

I Equilibrium edge load w∗(λ)
changes with λ

Pr(t1 = s|s) = 0.8, Pr(t2 = s|s) = 0.6
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Equilibrium Characterization: Change λ Directionally

Middle regime: Λij
2

I Both populations have identical
costs in equilibrium

I Equilibrium edge load w∗(λ) does
not change with λ

Pr(t1 = s|s) = 0.8, Pr(t2 = s|s) = 0.6
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Effect of Information Penetration

I The equilibrium edge load does not change with the size of one population
if and only if the impact of information on that population is not limited
by its size

I The thresholds λi , λ̄i are dependent on λ−ij and π, but the qualitative
properties of equilibrium in each regime is robust with λ−ij and π

I Since any feasible change of λ can be written as a linear combination of
directional change, how equilibrium property changes in an arbitrary
direction can be obtained by analyzing the regimes in each direction.



Equilibrium Characterization: Intermediate Set Λ†

For any given π, there exists a non-empty intermediate set Λ†, where the
equilibrium outcome is independent with λ.

I All populations have the same costs in equilibrium

I The impact of information is not limited by the size of any population

I The equilibrium edge load w∗(λ) does not change with λ



Order of Equilibrium Population Costs

A complete order of C∗i (λ) can be obtained in polynomial time

I No assumption on π. Especially, we do not specify any one information
system is sufficient than another.

I Since when comparing any pair of populations, π effects the thresholds,
the order is dependent on π

I We sort all C∗i (λ) by comparing pairs of populations for no more than
|I|2 times, and the order is dependent on λ



One Population Uninformed

If population j is uninformd, C∗i (λ) ≤ C∗j(λ) for any i ∈ I.

I λ̄i = 1− |λ−ij |. Three regimes reduce to two.

I The uninformed population always has the highest cost
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Equilibrium Average Cost

I We provide tight lower bound of equilibrium average cost C∗(λ).

I Under certain conditions, C∗(λ) is minimized by any λ ∈ Λ†.

I The bound on worst case inefficiency in equilibrium is identical to that in
complete information game
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Conclusion

Information penetration λ effects the impact of information in equilibrium,
order of equilibrium population costs and equilibrium average cost

I The population size vector effects the equilibrium outcome by limiting the
impact of information on each population. The equilibrium outcome does
not change with population sizes if and only if the impact of information is
fully achieved.

I A complete order of population equilibrium costs can be obtained in
polynomial time given any common prior and population size vector

I We analyze lower bound on equilibrium average cost, minimum equilibrium
average cost, and the worst case inefficiency


