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Local events have global impacts 

9/6/2017
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Flight connectivity is a big driver of 
delay propagation

9/6/2017

Bureau of Transportation Statistics, 2016; 
EUROCONTROL CODA, 2016
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 Nodal and link states are best modeled as continuous variables

 Interactions are weighted and directed (asymmetric)

 Interactions (network topologies) vary with time

Challenges in modeling infrastructure networks

9/6/2017

[Delay Data: Bureau of Transportation Statistics]
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A network-centric view of air traffic delays

9/6/2017

Adjacency matrix, A:

 For example, delay levels on edges between airports

 Weighted, directed, time-varying networks
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Simplistic model of delay dynamics

9/6/2017

 Given an adjacency matrix, A = [aij]

 “State” of system:

 Therefore, for given network topology:

where

[Gopalakrishnan et al. CDC 2016]
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 For tractability, assume that network topology belongs to a 
finite (known) set of possibilities

 Results in a hybrid system

 Assume that network topology switches between different 
values in a Markovian manner

 Results in a Markov Jump Linear System

 Each discrete mode has its own linear dynamics, depending on 
the network topology (adjacency matrix)

Network topology is time-varying

9/6/2017
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 Identify set of characteristic topologies
(“discrete modes of operation”) 

 Determine linear continuous state 
dynamics under a fixed topology 

 Switched linear system with Markovian
transitions:

 Markov Jump Linear System (MJLS)

Dynamics with switching network topologies

9/6/2017
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[Gopalakrishnan et al. CDC 2016]
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Individual discrete modes 

9/6/2017[Gopalakrishnan et al. CDC 2016]
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 Consider stability of MJLS model with periodic time-varying 
mode transition matrices (determined by hour of day)

 Resulting MJLS model shown to be mean and almost surely 
stable

 System appears to be stabilized by the temporal variations in the 
mode transition matrices

Stability of MJLS model

9/6/2017[Gopalakrishnan et al. CDC 2016]



Page 11

 Model learned using 2011 data; validation using 2012 data

MJLS model validation

9/6/2017
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Measure of airport resilience: Delay persistence

9/6/2017[Gopalakrishnan et al. CDC 2016]
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Measure of airport resilience: Network effects

9/6/2017

(Color and size of circle both denote induced inbound delay per unit delay at other airport) 
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 Airports within a community have high delays between them

Delay communities

9/6/2017

Community structure for delay network ( 23 March 2011)

[Gopalakrishnan et al. ACC 2016]
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 Analysis of finite-time behavior
[Cavalcanti/Balakrishnan, IEEE CDC 2017] 

 Triggering mode transitions
 Weather, Traffic Management

 Post-disruption recovery

 Optimal control of networks with 
switching     

 Prediction of future delays and delay 
states [Gopalakrishnan/Balakrishnan ATM R&D 

Seminar 2016]

 Multi-layer, multi-timescale networks
 Cancellations, operations, capacity     

[ICRAT 2016]

 Sign-stability of networks with 
switching topologies

Ongoing research

9/6/2017
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 US airline operations consume 81 billion gallons of fuel/year 
(26.5% of airline expenses)

 Estimation of the fuel consumed during a flight is a long-
standing challenge in air traffic management

 Important for fuel burn and emissions inventories

 Necessary for evaluating impact of modernization efforts and 
changes in operational procedures

Machine learning models of engine performance

9/6/2017

Trajectory Fuel burn
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Traditional fuel flow model architecture

9/6/2017
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[Adapted from Enea et al. 2017]
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 FAA’s NextGen Office Model, Aviation Environmental Design Tool 
(AEDT), Aircraft Fuel Evaluation Simulation Tool (AFEST)

 GfL and Technische Universität Dresden’s EJPM-based Trajectory 
Analysis Software (ETAS), operationally used by the German Air 
Navigation Service Provider (ANSP) Deutsche Flugicherung (DFS)

 Airservices Australia’s Dalí

 Eurocontrol’s Base of Aircraft Data (BADA) is used as the Aircraft 
Performance Model (APM) in all of the above

 Deterministic models

Most fuel burn models follow this architecture

9/6/2017
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 Two flights of the same aircraft type, flying similar trajectories, can still have 
different fuel consumption

 Weather conditions (e.g., winds) can greatly influence fuel burn

 Weight

 A 1,000 lb reduction in empty weight + payload can result in 0.6-0.7%  fuel savings for 
a Boeing 737

 Empty weight increases 0.1-0.2% per year due to moisture/dirt accumulation

 Maintenance activities (e.g., repetitive engine washes) can improve fuel burn

Operational variability

9/6/2017

Cumulative benefit 
of 500-cycle wash

Cumulative benefit 
of 1000-cycle wash

[Boeing, 2004]



Page 20

Traditional fuel flow model architecture

9/6/2017
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A new paradigm for fuel burn modeling

9/6/2017[Adapted from Enea et al. 2017]
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 Use Flight Data Recorder (FDR) records from operational flights 
to develop statistical models

 Explicitly model uncertainty of estimates using confidence 
intervals

 Leverage insights from physics (e.g., for feature extraction by 
considering dependence on various variables)

 Predictive variables restricted to trajectory variables

Statistical modeling of aircraft fuel flow

9/6/2017
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 Gaussian Process Regression

 Nonparametric, probabilistic method

 A function is said to be drawn from a 
Gaussian Process when any finite set of 
function values follows a joint Gaussian 
distribution

 Advantages
 No need to choose basis functions

 Fast estimation of predictive distributions

 Disadvantages
 Computationally expensive due to matrix 

inversion

Gaussian Process Regression models

9/6/2017

(before making observations)

(after making observations)

Rasmussen et al., 2006.
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[1] Airborne fuel burn prediction

9/6/2017

A321-111 GPR BADA SFI ICAO

Ascent 0.4 7.5 N/A N/A

Climb Out -0.2 -0.6 6.7 1.5

Cruise 0.5 17.9 N/A N/A

Descent 1.5 -40.6 N/A N/A

Approach 2.4 -12.3 30.
6

45.8

[Chati & Balakrishnan
Transp. Research Record 2018]

[Chati, ACRP Graduate Research Award]

Mean prediction error (%):
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 Inferring takeoff weight of a flight from its takeoff roll trajectory

 Initial mass (a.k.a. Takeoff Weight, or TOW) is an essential input for 
trajectory prediction, as well as fuel burn and emissions estimation

 TOW of a flight is considered proprietary, and generally not shared 
or known

[2] Takeoff weight prediction

9/6/2017
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Predictive performance: [2] TOW

9/6/2017

Aircraft 
Type

GPR BADA/ANP

Error (%) ME RMSE PC ME RMSE PC

A319-112 4.6 2.0 96 5.5 7.9 --

A320-214 3.6 1.4 100 4.7 2.8 --

A321-111 6.3 1.8 96 6.7 1.9e14 --

A330-202 2.2 0.4 100 6.0 2.3 --

A330-243 1.9 0.3 95 3.6 0.9 --

A340-541 1.7 0.3 100 4.6 0.8 --

B767-300 1.9 0.3 100 8.3 2.7 --

B777-300(ER) 2.0 0.4 96 5.5 1.0 --
ASDE-X FDR ANP
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[Chati & Balakrishnan ATM R&D Seminar 2017]
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 Improve the surface aircraft performance model to predict taxi 
fuel burn

[3] Developing a surface model for FAA’s AEDT

9/6/2017
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Predictive performance: [3] Taxi fuel burn

9/6/2017

GPR ICAO GPR ICAO

Mean err. (%) Mean abs. err. (%)

A330-343 -4.2 31.2 4.6 31.8

B777-
300ER

-2.9 34.4 2.9 34.4
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 Fuel burn models for fleet-wide assessment for inventories

 Estimation of components (surface, air) given aggregate fuel burn

Ongoing work

9/6/2017


