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[Delay Data: Bureau of Transportation Statistics]

+ Nodal and link states are best modeled as continuous variables
“ Interactions are weighted and directed (asymmetric)
* Interactions (network topologies) vary with time
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A network-centric view of air traffic delays

For example, delay levels on edges between airports
Weighted, directed, time-varying networks
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* Given an adjacency matrix, A = [a;]

din(t + 1) = lpdin (8) + D B;7a5i(8) A0 (2)

J
diut (t =+ 1) — qgut dzout (t)+ Z 37?‘ taij (t)dZn (t)
J

Jout
+ “State” of system: X¥(r) = [ ﬁ (t(;) ]

+ Therefore, for given network topology: Z(¢ + 1) = I'(¢)Z(¢)

0 A@)T
where ['(t) = [a] + [5] [/I(t) (O) ]
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* For tractability, assume that network topology belongs to a
finite (known) set of possibilities

* Results in a hybrid system

+ Assume that network topology switches between different
values in a Markovian manner

+ Results in a Markov Jump Linear System

+ Each discrete mode has its own linear dynamics, depending on
the network topology (adjacency matrix)
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+ ldentify set of characteristic topologies
(““discrete modes of operation”)

+ Determine linear continuous state
dynamics under a fixed topology

Mode switch

System
evolves
under 1t

topology

System
evolves
under 2n

topology

+ Switched linear system with Markovian
transitions:

(t+1) = X(1) (

mi(t) = Prm(t+1) = jlm(r) = Modeswitch o

Xe+1) = JTE@), it m@)=iand m(t+1)=j )

* Markov Jump Linear System (MJLS)
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+ Consider stability of MJLS model with periodic time-varying
mode transition matrices (determined by hour of day)

+ Resulting MJLS model shown to be mean and almost surely
stable

+ System appears to be stabilized by the temporal variations in the
mode transition matrices

Pageto yo ¥ FOUNDATIONS OF RESILIENT

SSSSSSSSSSSSSSSSSSSS [Gopalakrishnan et al. CDC 2016]  9/6/2017



* Model learned using 2011 data; validation using 2012 data
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+ Airports within a community have high delays between them
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Analysis of finite-time behavior
[ Cavalcanti/Balakrishnan, IEEE CDC 2017]
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Triggering mode transitions
* Weather, Traffic Management
Post-disruption recovery

+  Optimal control of networks with
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Type of hour, based on Traffic Management Initiatives

Prediction of future delays and delay
states [Gopalakrishnan/Balakrishnan ATM R&D B : .

Seminar 2016]

Multi-layer, multi-timescale networks

* Cancellations, operations, capacity
[ICRAT 2016]

Sign-stability of networks with
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Machine learning models of engine performance

US airline operations consume 81 billion gallons of fuel/year
(26.5% of airline expenses)
Estimation of the fuel consumed during a flight is a long-
standing challenge in air traffic management

Important for fuel burn and emissions inventories

Necessary for evaluating impact of modernization efforts and
changes in operational procedures

Fuel burn

Page 16 9/6/2017



/ Takeoff Weight (TOW)

/ User preferences /L\L

—>

Surveillance / Determine
> .
data / )% Airspeed

Determine

Configuration

Determine
Drag

!

yd

Weather

/

(density, temp., wind) /

C Fuel Burn )(—@(—

Page 17

Aircraft Performance
Model or APM
(e.g., BADA)

Determine
Fuel Flow

!

(e

Determine
Thrust

Of

FORCES

FOUNDATIONS OF RESILIENT
YSICAL SYSTEMS

[Adapted from Enea et al. 2017] 962017



Most fuel burn models follow this architecture

FAA’s NextGen Office Model, Aviation Environmental Design Tool
(AEDT), Aircraft Fuel Evaluation Simulation Tool (AFEST)

GfL and Technische Universitat Dresden’s EJPM-based Trajectory
Analysis Software (ETAS), operationally used by the German Air
Navigation Service Provider (ANSP) Deutsche Flugicherung (DFS)

Airservices Australia’s Dali

Eurocontrol’s Base of Aircraft Data (BADA) is used as the Aircraft
Performance Model (APM) in all of the above

Deterministic models
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Two flights of the same aircraft type, flying similar trajectories, can still have
different fuel consumption

Weather conditions (e.g., winds) can greatly influence fuel burn
Weight
* A1,000 Ib reduction in empty weight + payload can result in 0.6-0.7% fuel savings for

a Boeing 737
“ Empty weight increases 0.1-0.2% per year due to moisture/dirt accumulation

Maintenance activities (e.g., repetitive engine washes) can improve fuel burn
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Use Flight Data Recorder (FDR) records from operational flights
to develop statistical models

Explicitly model uncertainty of estimates using confidence
intervals

Leverage insights from physics (e.g., for feature extraction by
considering dependence on various variables)

Predictive variables restricted to trajectory variables
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* Gaussian Process Regression
* Nonparametric, probabilistic method
y = f(x)+ee~N(0,07)
Joo~ Q’P(O,k(xp,xq))
* Afunctionis said to be drawn from a
Gaussian Process when any finite set of

function values follows a joint Gaussian
distribution

* Advantages
* No need to choose basis functions
 Fast estimation of predictive distributions
+ Disadvantages

* Computationally expensive due to matrix
inversion
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Mean prediction error (%):

A321-111 GPR BADA SFI ICAO
Ascent 0.4 7.5 N/A | N/A
ClimbOut | -0.2 | -0.6 | 6.7 1.5
Cruise 0.5 17.9 | NJA | N/A
Descent 1.5 | -40.6 | N/JA | N/A
Approach | 2.4 | -12.3 | 30. | 45.8
[Chat._&-BaJakn:shI:?an
Transp. Research Record 2018]
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“ Inferring takeoff weight of a flight from its takeoff roll trajectory
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+ Initial mass (a.k.a. Takeoff Weight, or TOW) is an essential input for
trajectory prediction, as well as fuel burn and emissions estimation
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+ TOW of a flight is considered proprietary, and generally not shared
or known
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Aircraft BADA/ANP
Type
Error (%) ME | RMSE | PC | ME | RMSE | PC
A319-112 4.6 2.0 96 5.5 7.9 -
A320-214 3.6 | 1.4 | 100 | 4.7 | 2.8 | -
A321-111 6.3 | 1.8 96 | 6.7 |1.9e14
A330-202 22 | 04 | 100 | 6.0 | 2.3 | -
A330-243 1.9 0.3 95 | 3.6 | 0.9 | -
A340-541 1.7 0.3 100 | 4.6 0.8 -
B767-300 1.9 0.3 100 | 8.3 2.7 -
B777-300(ER) 2fgha E&F).Bi!a.kris%ga. Aé"’?"&nlgm'* ar--z
. G FORCES
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Improve the surface aircraft performance model to predict taxi

fuel burn
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* Fuel burn models for fleet-wide assessment for inventories
+ Estimation of components (surface, air) given aggregate fuel burn
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