NRI-FND-Probabilistic Hypothesis Driven, Adapting Human-Robot Teams

Award IIS-183049

Prof. Mark Campbell Beatriz Arruda Asfora, Jacopo Banfi, Vikram Shree Cornell University

April 21st, 2022


NRI-FND-Probabilistic Hypothesis Driven, Adapting Human-Robot Teams

Challenge

 Cooperation for human-robot teams operating in complex environments evolving over time

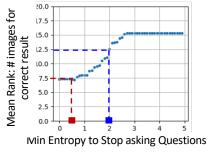
Novel Solutions:

- 1) Interaction based on natural language
- 2) Optimization for multiagent teaming
- **3) Integration/Validation**: SaR mission, Firefighter input, Danger level inference, heterogenous planning with probabilistic constraints

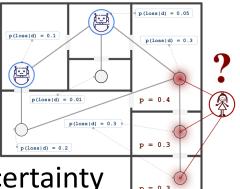
Broader Impact

- Applications: SaR, homeland security, disaster response, ...
- Outreach activities w/ high schools

NSF NRI Meeting, M Campbell



Interactive Communication


- Robot infers which question to ask to reduce uncertainty
- Leverages language-based Re-ID
- Task related interactionsHigh rate of

task completion

MILP Multi-agent

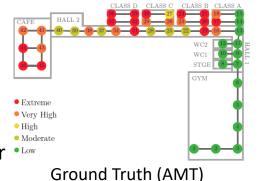
Planning with Uncertainty

- Fast and scalable probabilistic search
 - 90x faster than current state of the art
- Centralized and *distributed* solutions
 - multiple searchers
 - arbitrary capture ranges
- Current: Heterogeneous adaptive tasking

V Shree, WL Chao and M Campbell. "Interactive Natural Language-based Person Search," in RA-L, 2020 Asfora, BA, Banfi, J and Campbell, M, 2020. Mixed-Integer Linear Programming Models for Multi-Robot Non-Adversarial Search. IEEE RA-L V Shree*, B Asfora*, R Zheng, S Hong, J Banfi, M Campbell. "Exploiting Natural Language for Efficient Risk-Aware Multi-robot SaR Planning," RA-L, 2021

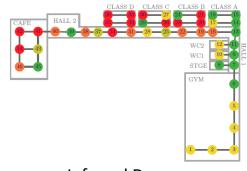
CornellEngineering

NSF NRI Meeting, M Campbell



Datasets: Images, Danger, Nat Language

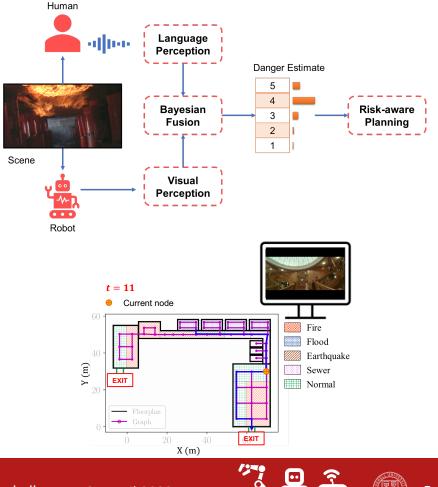
- Synthetic dataset
 - Simulated disaster images
 - 4000 sentence descriptions from AMT
- Movies and TV:
 - 15 movies, 5 TV shows
 - flooding, fire, earthquakes
 - 1000 images
 - annotated with danger levels and keywords
- Inferred Danger Level
 - Fuse similarity scores across images
 - Results demonstrate estimated danger to be similar to ground truth data



- A number of houses could be seen along the roadside. The place looks green.
- The houses are lit on fire and looks like a big accident has occurred.

Word-cloud of sentences

Inferred Danger


CornellEngineering

NSF NRI Meeting, M Campbell

Human+Robot Fusion

- **Goal:** unify scene perception leveraging both robots' and humans' abilities.
 - **Robots**: visual detections, word inference
 - Humans: scene/danger descriptions
- Bayesian fusion: improves danger estimation by leveraging robot/camera + human language information
 - Best of both worlds
- **Risk-aware planner:** identify safer paths out of the dangerous environment
 - 19% higher success rate than all baselines
- Currently in RA-Letters review

CornellEngineering

NSF NRI Meeting, M Campbell

