

Clusters and Communities in Air Traffic Delay Networks

Karthik Gopalakrishnan Prof. Hamsa Balakrishnan MIT

Motivation

- * 22% of flights were delayed by more than 15 minutes in 2015
- * Cost of delays: 31-40 billion dollars annually
- * Important questions:
 - * When can we say that the delay levels in the system are similar?
 - * What are the common delay patterns?
 - * When do these delay patterns occur?
- Broad objective: Delay prediction and mitigation

Delay network

The delay state of the air transportation system at any time can be represented using a weighted-directed graph

* Nodes: airports

Edge weights:
 median delay (min)

Time series of delay networks

- * Given: Time series of networks $G_1, G_2, ..., G_N$
- * Objective: To find characteristic delay networks

Clustering delay networks

- * To find characteristic delay networks, we identify clusters
 * Cluster the delay networks based on feature vectors
- * For every network G_i , we construct a feature vector f_i
- * The feature vector f_i should capture
 - Delay connectivity
 - Magnitude of delays

Features for comparing networks

- The hub and authority score of a network is a measure of node centrality
 - Good hub points to good authorities
 - Good authority points to good hubs

$$\begin{array}{c} h=0.09\\ a=0.09\\ JFK\\ 1\\ 2\\ h=0.89\\ a=0\\ a=0\\ BOS\\ 10\\ SFO\\ SFO\\ \end{array}$$

$$f_i = (\text{Total delay})_i \times \begin{bmatrix} \vec{h} \\ \vec{a} \end{bmatrix}$$

The characteristic delay states

(1) Low delay state

(2) Medium delay state

(3) High delay state

The characteristic delay states

(4) SFO delay state

(5) Chicago delay state

(6) Atlanta delay state

Time of day (Eastern Time)

Extension to types-of-days

Example: High delay type-of-day

7 Sept 2011, 4 AM EST

Community detection in delay networks

Airports with similar delay levels between them form a community

The structure of communities varies with delay state!

Summary

- Identifying characteristic delay patterns is important for
 - Developing predictive models
 - Planning mitigation strategies
- Identified characteristic delay states and types of days
 - Describes the spatial and temporal delay patterns
- * Extensions:
 - * Correlations of delay states with control actions, weather disruptions
 - Models for delay dynamics

