

Vulnerability Analysis Based on Cyber-Attack and Defense Models in Power Transmission Systems

Saqib Hasan Department of Electrical Engineering and Computer Science Vanderbilt University

Introduction

- Smart grids are a result of advancement in technology.
- Potentially increases the surface for cyber-attacks.
- Dec. 2015 Ukraine blackout is an example of recent cyber-attack.
- Power systems consists of several substations.
- Substations have their own RTUs (Remote Terminal Units).
- Components in power systems can be remotely controlled through these RTUs.
- Attackers take advantage of technology advancements and compromise the RTUs to destabilize the system.
- Compromising all the substations is difficult because of the time and effort required by the attacker.
- Challenge is to identify the critical substations to attack and defend based on attacker and defender budgets.

Power System Model

* System:

* U: set of buses, G: set of generators, T: set of transformers, L: set of loads, R: set of transmission lines, P: set of protection assembly components (distance relays, over-current relays and circuit breakers).

Modeling substations

- * Let $S = \{S_1, \dots, Sm\}$ be the substations.
- * $S_i \subseteq P, \forall i \in \{1, \dots, m\}$
- * $\bigcup_{i=1}^{m} S_i = P$

* Load loss function

- * Loads are defined by L_i , where i = 1 to $n, n \in \mathbb{N}$
- * Current flowing through each load is defined by:

$$I_l$$
, where $l = 1$ to $n, n \in \mathbb{N}$

Load loss is calculated as:

$$J(A_P) = \sum_{i=1}^n L_i$$
, $\forall I_l = 0$

Static Attack Model

* Attack Model:

- * First, attacker launches a cyber-attack on substations $S' \subseteq S$.
- * Then, attacker launches a cyber-attack A_P on protection assemblies $P' \subseteq S'$.
- * Attacker has budget B_S where $|S'| \leq B_S$.
- * Uniform, unit cost for attacking a substation.

* Attacker's Goal:

* Goal of the attacker is to maximize the load loss

 $argmax_{S'} max_{P' \subseteq S'} J(A_P)$
s.t. $|S'| \le B_S$

Static Defense Model

* Defense Model:

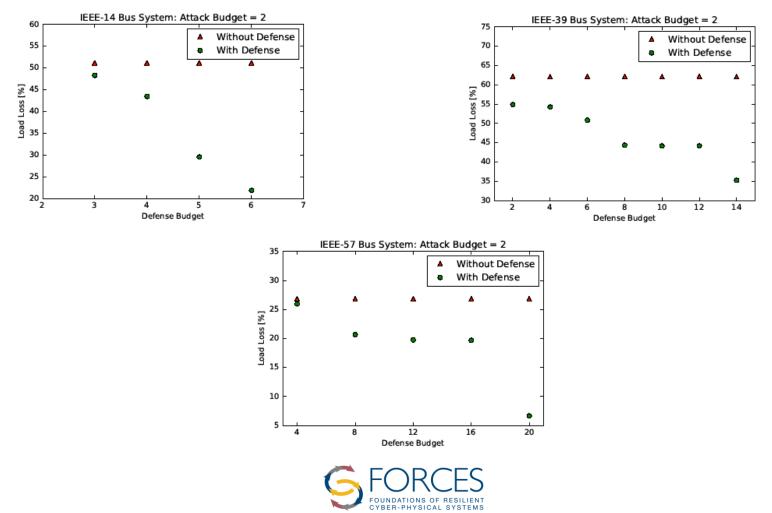
- * Defender can protect the substations D_S from cyber-attacks.
- * Defender has a budget B_D , where $|D_S| \leq B_D$.
- * Defender's Goal:
 - * Goal of the defender is to minimize the load loss

```
argmin_{D_{S}}max_{S'\subseteq S-D_{S}}max_{P'\subseteq S'}J(A_{P})
s.t. |D_{S}| \leq B_{D}
|S'| \leq B_{S}
```

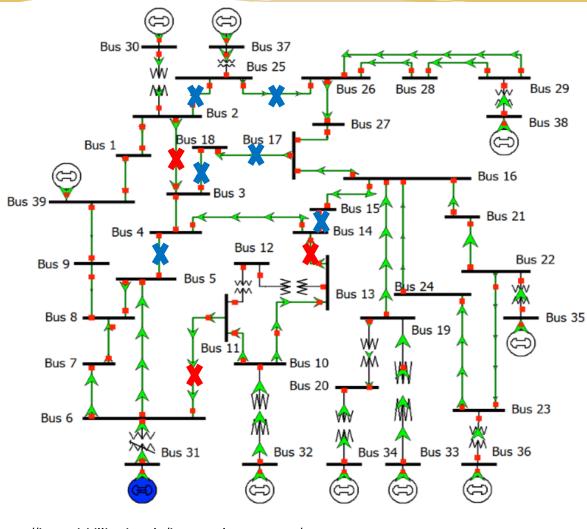

Simulator and Approach

- OpenDSS, a steady state simulator is used to compute the results.
- * Algorithms used for attack and defense.

```
Algorithm 1 Algorithm for Finding Worst-Case Attack
  1: Input: G_p, B_S, B_P
  2: Initialize: L_w \leftarrow 0, T_w \leftarrow \emptyset, S_w \leftarrow \emptyset, L_q \leftarrow 0
  3: for p = 1, ..., B_S do
          if S_w == \emptyset then
  4:
  5:
               S_d \leftarrow \text{Substation\_comps}(\emptyset)
  6:
          end if
  7:
          else:
  8:
              S_d \leftarrow \text{Substation\_comps}(S_w)
  9:
          for all i \in S_d do
10:
              S_t \leftarrow S_d(i)
               T_o, L_m \leftarrow \texttt{Worst\_Case\_Attack}(G_p, S_t, B_P)
11:
12:
               if L_m > L_w then
13:
                   L_w \leftarrow L_m
                   T_w \leftarrow T_o
14:
15:
                   S_w \leftarrow i
                   if (L_q - L_w) == 0 then
16:
17:
                        break
18:
                   end if
                   else:
19:
                       L_g \leftarrow L_w
20:
21:
               end if
22:
          end for
23: end for
24: return S_w, T_w, L_w
```

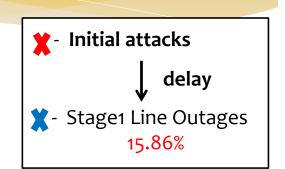

Algorithm 2 Algorithm for Finding the Defense

```
1: Input: G_p, B_S, B_P, D_S
 2: Initialize: S'_d \leftarrow \emptyset, S_D \leftarrow \emptyset, L_w \leftarrow 100
 3: S_{wo}, S_{wl}, S_{ws} \leftarrow \text{Get\_Attack}(G_p, B_S, B_P, \emptyset, \emptyset)
 4: for i = 1, ..., D_S do
 5:
          L_w \leftarrow 100
          if S_D! = \emptyset then
 6:
                S_{ws} \leftarrow \text{Get Attack}(G_p, B_S, B_P, S_D, \emptyset)
 7:
 8:
          end if
 9:
          for all p \in S_{ws} do
10:
                S_{wo}, S_{wl}, S_{sub} \leftarrow \text{Get}_Attack(G_p, B_S, B_P, S_D, p)
                if S_{wl} < L_w then
11:
12:
                     L_w \leftarrow S_{wl}
13:
14:
                end if
15:
          end for
          S_D \leftarrow S_D \cup S'_A
16:
17: end for
18: return S_D
```

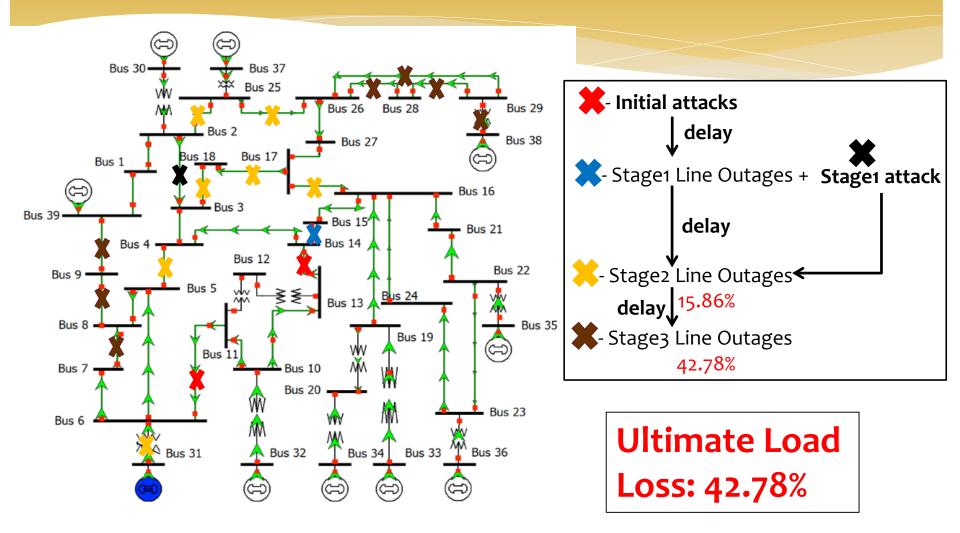


Results for Static Attack and Defense

* Defense vs. Attack



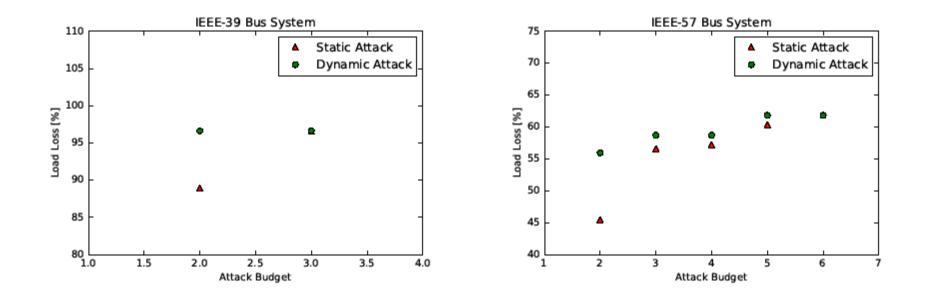
Static Attack Scenario


http://icseg.iti.illinois.edu/ieee-39-bus-system/

Dynamic Attack Scenario

http://icseg.iti.illinois.edu/ieee-39-bus-system/

Dynamic Attack Model


- * Attack A(k) is launched at timestep k
- * Define attack history as $H(k) = \{A(i)\}_{i=1}^{k-1}$
- * F(H(k)) provides system state x(k), where F(H(k)) is the network config
- * Worst-case attack:

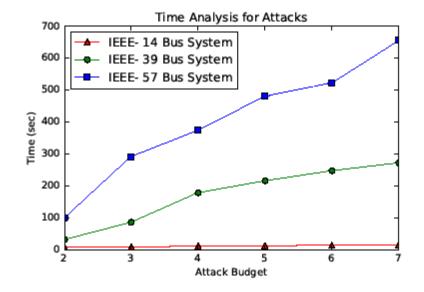
$$\max_{A(1),\dots,A(T)} \sum_{k=1}^{T} J(A(k), x(k))$$

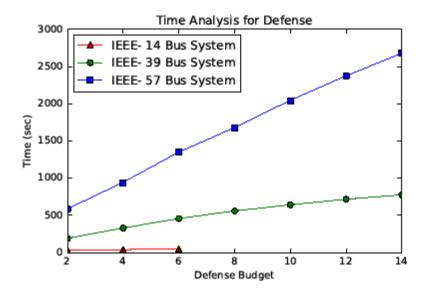
s.t. $x(k) = F(H(k))$
$$\sum_{k=1}^{T} |A(k)| \le B$$

 $\forall k, k' \in \{1, \dots, T\} : A(k) \cap A(k') = \emptyset$

Dynamic vs Static Attack Results

- * **Dynamic** vs **Static**
- * Dynamic attack results in more load loss





THANK YOU

Static Attack and Defense Run Time

