Stochastic Hybrid Modeling of Flow Network Incidents

Li Jin and Saurabh Amin

Massachusetts Institute of Technology

jnl@mit.edu; amins@mit.edu

FORCES all hands meeting, Oakland, CA June 16th, 2014

Stochastic Hybrid Incident Models

Incident management

Network incidents

Water main breaks

Gas pipe bursts

Highway accidents

Our focus

- <u>Stochastic hybrid dynamical models</u>: combine nonlinear flow dynamics and random jumps due to state-dependent incidents;
- Model identification: flow data in normal and incident modes;
- Long-time properties: accessible sets, invariant measures, convergence under closed-loop dynamics

Stochastic incident model

Incident parameters: (λ, α)

$\lambda: \ {\rm occurrence}/{\rm clearance} \ {\rm rate}$

- Modeled as continuous-time Markov process;
- Incidents induce random jumps;
- Jump rates may depend on continuous state;
- Incident locations / types lead to different modes.

- $\lambda_i = \text{exiting rate from state } i$
- q_{ij} =transition rate from i to j

•
$$\lambda_i = \sum_j q_{ij}$$

• λ_i and q_{ij} may depend on continuous state

Stochastic incident model

Incident parameters: (λ, α)

 $\alpha^{j}\colon$ Impact or intensity under incident mode j

Reduction in capacity of link *i*:

$$F_i^j = (1 - \alpha_i^j) F_i^0,$$

 $\alpha_i^j \in (0, 1)$: reduction factor F_i^j : capacity in the *j*th incident mode F_i^0 : nominal capacity

- Incident mode $j \rightarrow \alpha^j = (\alpha_1, \alpha_2, \cdots, \alpha_N)$
- Switch in continuous dynamics and associated vector field
- A well known result: random switching behavior can lead to undesirable consequences.

Continuous dynamics

Network flow model

- Topology: directed link-node model with OD pair(s)
- Flow function: relationship between flow and density (load)
- Mass conservation differential equations
- Control / routing strategy

Known results for highway dynamics: Varaiya's Theorem

- Dynamics admit multiple equilibria.
- Structure of equilibria depend on system parameters and input.
- All trajectories converge to some stable equilibrium.

What happens when network is subject to (λ, α^j) type incidents?

Random incidents: Stochastic Hybrid System (SHS)

Incident model and Flow dynamics \Rightarrow SHS

Under the (λ, α) model, incidents occur/clear randomly:

- State switches between α -dependent dynamics with transition rates λ ;
- Deterministic flow dynamics between random switches.

- System switches between incident modes;
- Transition rate λ depends on continuous state (density or load);
- Evolution of the system is an alternation of deterministic motion and random transition.

Long-time properties: Accessible set

An SHS switching between a set of vector fields may not exhibit convergence. Two important questions arise:

- Set of accessible points and convergence;
- Existence and characterization of invariant measure.

Theorem [Jin and Amin, submitted]

For a given control input and (λ, α) incident model, the set of accessible points exists and is unique. The set supports an invariant measure.

- Starting from any initial condition, the state ends up in the accessible set;
- Shape of the accessible set is determined only by *a*-dependent vector fields.

Long-time properties: Invariant measure

Accessible set supports an invariant measure:

- Distribution of system state after sufficiently long time;
- Depends on both transition rates and deterministic dynamics;
- Useful to
 - Identify the probability of different scenarios
 - Compute expected performance of the SHS
 - Evaluate different control inputs.

