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General OPF Problem

minC (Pg )

:

(Quadratic) Cost of Conventional Generation

subject to

g(x) ≤ 0
:

Operational Limits & Line Flow Limits

h(x) = 0

:

(AC) Power Flow Equations
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AC-QP OPF Solution Method

Solve QP with latest 

power �ow solution

Run AC power Flow 

using QP solution

Converged? 

Di�erence in QP-

power �ow solutions 

< tolerance

Yes

No

End

Run initial power �ow 

[1] A. Wood, B. Wollenberg, and G. Sheble, Power Generation, Operation and Control, 2013.
[2] J. F. Marley, D. K. Molzahn, and I. A. Hiskens, to appear in IEEE Transactions on Power Systems, 2016.
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Stochastic AC-QP OPF Algorithm

Modified the AC-QP OPF algorithm to provide an AC-feasible
solution for a given set of wind scenarios

Does not rely upon model approximations

Maintains scalability with respect to the number of scenarios

Utilized a scenario based algorithm to accompany the solution with
a-posteriori probabilistic guarantees [4]

[4] M. Campi, S. Garatti, and F. Ramponi, ”Non-convex scenario optimization with application to system
identification”, CDC 2015.
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OPF Problem with Wind Generation Uncertainty

Given a set of possible wind scenarios, S:

minC (Pg )

:

(Quadratic) Cost of Conventional Generation

subject to

g(x) ≤ 0

:

Operational Limits & Line Flow Constraints

h(x) = 0

:

(AC) Power Flow Equations

∀m ∈ S:

g(x , xm) ≤ 0

:

Operational Limits & Line Flow Constraints

h(x , xm) = 0

:

(AC) Power Flow Equations
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Introducing scenarios into the AC-QP OPF

Given N scenarios, what is the minimum number that must be
included in the OPF problem so that the solution is feasible for all
N scenarios?

-Rank N Wind Scenarios 
according to

-Set k= 1

Constraint 
violation in
      any 
scenario? 

No
End

Yes

-Re-rank those 
scenarios with 
constraint violations

-k = k+1

Solve AC-QP pOPF
with k scenarios

Run AC Power 
Flows for all
N Scenarios
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Test Case

IEEE 14-bus network

Two wind generators added at nodes 9 and 3

40 MW of available wind power is assumed at each node in
the base case forecast (9.4% renewable penetration)
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Results: Cost of Generation
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Results: Empirical Probability of Violation
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Results: Number of Support Scenarios
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Conclusions

The AC-QP OPF method has been extended to include wind
power uncertainty, through the addition of a finite number of wind
scenarios. This modified AC-QP pOPF algorithm offers several
advantages:

It does not rely upon model approximations.

It produces an AC feasible solution.

It maintains scalability with respect to the number of
scenarios to be optimized over, which is a limitation of convex
relaxations.

Finally, it provides a probabilistically robust solution with
a-posteriori probabilistic violation guarantees.

J. Marley, M. Vrakopoulou, & I. Hiskens An AC-QP Optimal Power Flow Algorithm Considering Wind Forecast Uncertainty 12 / 13



Thank you, questions?

Jenny Marley
jkfelder@umich.edu
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