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Background

◮ Most of the components in the electrical grid are > 50 years old.

◮ Recent modernization of the grid (installment of AMIs) comes with
advantages to control and monitoring. However, in the wrong hands, the
data might pose a privacy treat.

◮ The electrical grid is today a cyber-physical system.

◮ Utilities are currently utilizing smart meters for meter-to-cash. The
potential of smart meters go far beyond this basic usage and the utilities
are looking for a justification for their investments. The market for energy
analytics∗ in the smart grid is estimated to be worth $9.7 billion by 2020.

∗Analytics is the discovery and communication of meaningful patterns in data.



A Flora of Interesting Problems

Interesting and challenging problems for academia: complex systems, enormous
amounts of data, multi-disciplinary, practical importance,... Also recent interest
in industry (C3 Energy, Opower, GE, IBM, Bidgely,...)

◮ Revenue protection
◮ Customer segmentation
◮ Risk management
◮ Disaggregation
◮ Load forecasting
◮ Voltage optimization
◮ Outage management
◮ Energy efficiency/incentive design
◮ Security and privacy
◮ ...



Security



Revenue Attacks in the Smart Grid

◮ Non–Technical losses are caused by actions external to the power system
such as theft, non–payment by consumers, or errors in accounting.

◮ The World Bank recently reported that in some countries (such as India)
as little as 50 percent of the generated electricity is paid for.



Revenue Protection

Revenue protection is the process of identifying non-technical losses in the

grid and correcting for those losses.

◮ Goal: Implement a revenue protection scheme so that the smart grid is
resilient to revenue attacks by adversarial agents.

◮ First step is building an efficient theft/anomaly detection algorithm which
takes in historical consumption data (monthly/quarter hourly), event flags,
work orders and meta information and returns a label (theft/normal). The
algorithm is trained using historical investigation results.
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Input Data

◮ AMI data including time series consumption data (hourly, quarter hourly,
etc.) and internal flags (’malfunction’, ’tamper’, etc.)

◮ Weather data

◮ Customer information (i.e. is the customer a producer?, billing
information, rate category, region, etc.)

◮ Work order information such as dates, times, and descriptions of
maintenance.



Features

◮ Max consumption drop over various intervals of time (month, day, year).

◮ Total variation over the past month/week/day.

◮ Production during the night.

◮ Region in which the customer resides.

◮ Work order based features such as scheduled visit followed by a large drop
in consumption.

◮ Non-zero consumption after closing account.

◮ Missing payments.

◮ . . .



Classification

◮ Classifier: Logistic regression, Adaboost, Random Forests,...
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Revenue Protection Results

◮ In conjunction with C3 Energy and several large utilities, we have
developed algorithms for detecting non-technical loss in the electricity grid.

◮ We trained and tested our algorithms on data from a utility company with
millions of customers.

◮ The data included time-series consumption data and meter events from
AMIs, weather data, customer demographics, and work orders.

◮ We identified ∼50 features and selected those that were highly correlated
with anomalous or tampering events.

◮ We utilized machine learning algorithms to develop a model for identifying
non-technical loss.



On Going Research in Revenue Protection and Beyond

Technology transfer to industry: Our research led to the development and
implementation of revenue protection machine learning algorithms for theft and
anomaly detection that have been deployed at several utility companies.

Advancement of research agenda through industrial interaction: Through
working with real data from utility companies, we have discovered new and
fundamental research problems that are practically relevant.

Revenue Protection in the Electrical Grid, Henrik Ohlsson, Lillian Ratliff, et al., 2014, in preparation.



Energy Efficiency
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Energy Disaggregation

◮ Yearly consumption data, weather & profile
information

◮ Infer most likely profile if information is missing

◮ Collaboration with C3 Energy and several
utility companies

Ratliff, Dong, Ohlsson, Sastry, Incentive Design and Utility Learning via Energy Disaggregation. IFAC 2014.
Dong, Ratliff, et al., Fundamental Limits of Non-Intrusive Load Monitoring. HICONS, 2014.
Dong, Ratliff, Ohlsson, Sastry, Energy Disaggregation via Adaptive Filtering. Allerton, 2013.
Dong, Ratliff, Ohlsson, Sastry, A Dynamical Systems Approach to Energy Disaggregation. CDC, 2013.



Incentive Design in Energy Systems
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Motivations for Incentive Design in Energy Systems

◮ Studies have shown that
providing device-level feedback
on power consumption patterns
to energy users can modify
behavior and improve energy
efficiency.

◮ Provide incentives in the form
of rebates and monetary
rewards focusing on devices
that fall into largest
consumption categories in order
to reduce energy consumption.

Creyts, et al., Reducing U.S. greenhouse gas emissions: How much at what cost? U.S. Greenhouse Gas Abatement
Mapping Initiative, 2007.
Laitner, et al., Examining the scale of the behaviour energy efficiency continuum. European Council for an Energy Efficient
Economy, 2009.
Perez–Lombard, et al., A review on buildings energy consumption information. Energy and Buildings, 2008.



Incentive Design via Energy Disaggregation
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Ratliff, Dong, Ohlsson, Sastry, Incentive Design and Utility Learning via Energy Disaggregation. IFAC 2014.
Dong, Ratliff, et al., Fundamental Limits of Non-Intrusive Load Monitoring. HICONS, 2014.
Dong, Ratliff, Ohlsson, Sastry, Energy Disaggregation via Adaptive Filtering. Allerton, 2013.
Dong, Ratliff, Ohlsson, Sastry, A Dynamical Systems Approach to Energy Disaggregation. CDC, 2013.



Knowledge Transfer – Consumer Feedback for Change

◮ Using this theoretical framework, in conjunction with C3 Energy and a
utility company, we will monitor the energy consumption of a small group
of homes and provide feedback to these users about their energy
consumption patters.

◮ The utility company is in a regulated market in which the utility
commission has incentivized them to reduce the overall consumption of its
consumer base.

◮ Through this pilot program, the utility company aims to learn which types
of feedback mechanisms will encourage lasting behavior changes in its
consumers.



Incentives Introduce New Vulnerabilities
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Privacy Contracts: Two-Type Model

◮ It is not the signal itself that is private but what can be inferred that is
private.

◮ There is a tradeoff between efficiency of grid operations and privacy-aware
sampling polices.

◮ We have a bound on a successful privacy breach by an adversary.

Contract Design:

Utility company can design screening mechanisms to obtain the consumer’s
privacy preferences (unknown type) by offering contracts where privacy is the
good and privacy-setting is the quality of the good.

◮ There are two privacy settings offered: xL,xH such that xL 6 xH ,
xL,xH ∈ R.

◮ We consider two types of consumers: θ ∈ {θL,θH} where θ represents how
much the consumer values high-privacy over low-privacy.

◮ The consumer type is unknown to the utility company.



Individual Rationality and Incentive Compatibility

◮ The utility company is to design a pair of contracts: {(tL,xL),(tH ,xH)}.

◮ The consumer’s utility is equal to zero if he does not select a privacy
setting (opt-out), and it is

U(x ,θ)− t > 0 (Individual Rationality)

if he selects the contract (t,x).

◮ Assumption: U is strictly increasing in (x ,θ).

◮ Incentive-compatible: all of the participants fare best when they
truthfully reveal any private information asked for by the mechanism:

U(xH ,θH)− tH > U(xL,θH)− tL

U(xL,θL)− tL > U(xH ,θL)− tH



Privacy Contracts: Utility Company

◮ Utility company cost:
v(x ,t) = t −g(x)

where g(x) is the unit cost resulting from the privacy setting x .

◮ g(x) is a strictly increasing, continuous function.

Screening Problem

max
{(tL,xL),(tH ,xH )}

(1−p)v(xL,tL)+pv(xH ,tH)

s.t.U(xi ,θi )− ti > 0, i = H,L

U(xH ,θH)− tH > U(xL,θL)− tL

U(xL,θL)− tL > U(xH ,θL)− tH

where p = Pr(θ = θH) = 1−Pr(θ = θL) ∈ (0,1) (prior on distribution of types
in the population)



Simplification of the Contract Design Problem

◮ Depending on the form of U(x ,θ) and g(x) this problem can be difficult
to solve.

◮ Assumption: U(x ,θH)−U(x ,θL) is increasing in x (i.e. the marginal gain
from raising the value of the privacy setting is greater for type θH).

◮ Then, the individual rationality and incentive compatibility constraints
reduce to

tH − tL = U(xH ,θH)−U(xL,θH)

tL = U(xL,θL)

Reduced screening problem
{

maxxH
{U(xH ,θH)−g(xH)}

maxxL
{−p(U(xL,θH)−U(xL,θL))+(1−p)(U(xL,θL)−g(xL))}

Ratliff, Dong, Ohlsson, Cárdenas, Sastry. Privacy and Customer Segmentation in the Smart Grid. Submitted to
CDC, 2014.



Privacy Contracts for Direct Load Control: An Example

DLC example: as you decrease the sampling rate the performance degrades.

◮ Let g(x) = 1
2 ζx2, 0 < ζ < ∞.

◮ Utility company’s utility be
v(x ,t) = t −g(x).

◮ p = P(θ = θH).

◮ Consumer’s utility
U(x ,θ) = 1

2 (x̄
2 − (x − x̄)2)θ

where 0 6 x 6 x̄

◮ Optimal quality:
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Ratliff, Dong, Ohlsson, Cárdenas, Sastry. Privacy and Customer Segmentation in the Smart Grid. Submitted to
CDC, 2014.



Privacy in the Smart Grid Summary

Electricity service is offered as a product line differentiated according to privacy
where consumers can self-select the level of privacy that fits their needs and
wallet.

◮ Using the contract theory framework, we can design insurance contracts

to be offered to either the consumer or the utility company.

◮ Revenue Protection: Utility company has a right to find out if a
consumer is hiding behind privacy to steal electricity suggesting we should
be studying these problems in parallel to develop a more resilient smart

grid.

◮ Multidimensional Screening: We are currently exploring hidden
convexities in the multidimensional screening problem in which consumers
have higher dimensional types which live on a continuum.

◮ Quantifying the Utility-Privacy Tradeoff: We can quantify the tradeoff
between privacy aware AMI sampling policies and smart grid operations.

Ratliff, Dong, Ohlsson, Cárdenas, Sastry. Privacy and Customer Segmentation in the Smart Grid. Submitted to
CDC, 2014.
Dong, Cárdenas, Ratliff, Ohlsson, Sastry. Quantifying the Utility-Privacy Tradeoff in the Smart Grid. Submitted to
IEEE Transactions on Smart Grid, 2014.



Customer Segmentation

Source: inhabitat.com

◮ Contract theory provides an active way to do customer segmentation.

◮ Known consumer preferences can be used for targeting and incentive design.

◮ We are working with Lawrence Berkeley National Lab and Southern California
Edison to do customer segmentation for targeting customers for demand
response programs.



Workshop on Energy Analytics at the 2014 CDC!?



Conclusion

◮ Energy analytics is a very interesting and promising field

◮ Proposed a workshop on Energy Analytics at the Control and Decision
Conference (CDC) to be held in Los Angeles, Dec 2014.

◮ Working close to companies enables us to focus on relevant problems and
access data.

◮ The fundamental problems at the core of risk management, load
forecasting, voltage optimization, outage management, etc. can be
thought of as arising from attacks by adversarial agents.

◮ Disaggregation, customer segmentation, and incentive design all raise
questions about privacy.

As a result, energy analytics and game theory must be used in conjunction to
create a resilient smart grid so that we can recovery from adversarial attacks

as well as faults.

◮ These ideas and framework extend to S-CPS.


