

Wenzhuo Wu¹, Stephen Beaudoin¹, Hong Z. Tan¹, Bryan Boudouris¹, Thomas Low², Juan Wachs¹

¹Purdue University, West Lafayette, IN ²SRI International

Research Task

Explosive ordnance disposal is among the most hazardous occupations. We mitigate the risk of explosive ordnance disposal by developing a robot that can detect and display concealed improvised explosive devices based on augmented tactile information.

Key Challenges

- ❖ Visualize the concealed objects and plan manipulation policies.
- Develop tactile device with high resolution and contact sensitivity.
- ❖ Develop selective polymers to detect explosive residues with high sensitivity.
- Develop a haptic display system to convey the multi-modal information.

Taurus Teleoperation System Haptic Controller 3D Glasses Vision Bag with Explosive 3D Visual Display

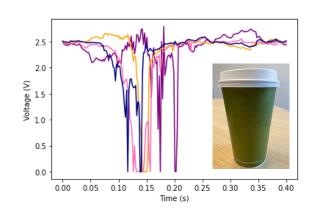
Teleoperator Scientific Impact

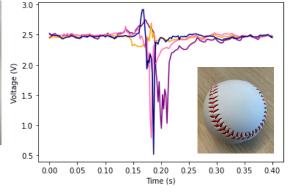
- ❖ Technology for detecting trace energetics in surface residues could be also applied to detection tasks of other hazardous chemicals.
- The intelligence based on tactile expands the application of robotics to scenarios where optical vision is not applicable.
- The enhanced tactile feedback in teleoperation contributes to the task performance of telesurgery.
- The developed haptic display system could also assist communication for hearing/visually impaired people.

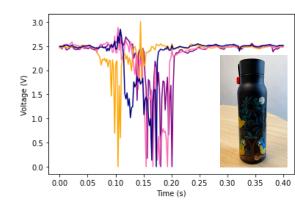
Broader Impact

- Reduce the risk of EOD teleoperators using enriched perception.
- Incorporating the research outcomes into the coursework of Purdue University.
- The research activities have increased the participation of minorities.

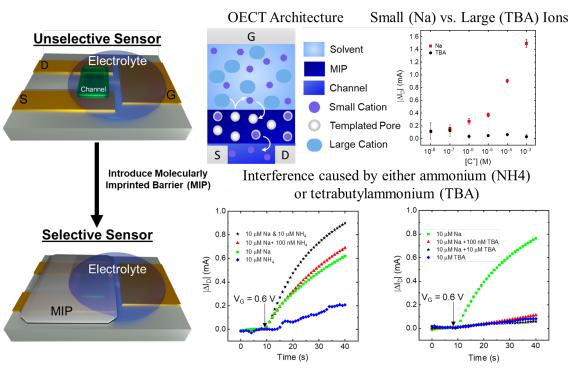
Fingers See Things Differently (FIST-D): A Robotic Explosive Ordnance Disposal (EOD) based on Augmented Tactile Imaging


Wenzhuo Wu¹, Stephen Beaudoin¹, Hong Z. Tan¹, Bryan Boudouris¹, Thomas Low², Juan Wachs¹

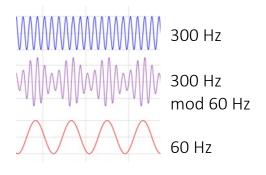

¹Purdue University, West Lafayette, IN ²SRI International


Technical Solution for Sensing Devices

1: Develop Tactile Device for Object Recognition


Triboelectric tactile glove

2: Develop Sensor for Explosive Recognition


Wenzhuo Wu¹, Stephen Beaudoin¹, Hong Z. Tan¹, Bryan Boudouris¹, Thomas Low², Juan Wachs¹

¹Purdue University, West Lafayette, IN ²SRI International


3: Haptic Display for Virtual Reality based Manipulation

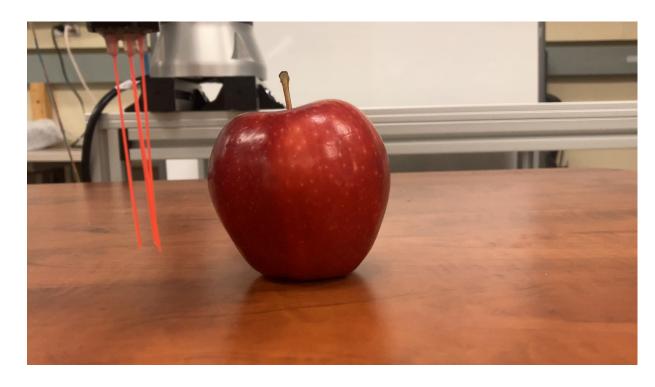
Haptic sleeves worn on the forearm and opposite upper arm

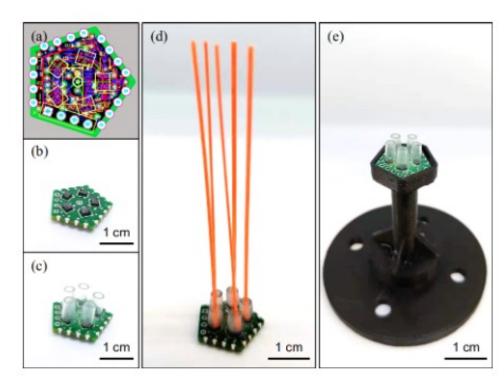


Frequency components of vibrotactile stimuli

Virtual Reality simulation for manipulating a bag

4. Autonomous tactile exploration & recognition


The procedure of autonomous tactile exploration



Fingers See Things Differently (FIST-D): A Robotic Explosive Ordnance Disposal (EOD) based on Augmented Tactile Imaging

Wenzhuo Wu¹, Stephen Beaudoin¹, Hong Z. Tan¹, Bryan Boudouris¹, Thomas Low², Juan Wachs¹

Locomotion algorithm for contour tracing

Whiskers based tactile sensor for safe object exploration

Wenzhuo Wu¹, Stephen Beaudoin¹, Hong Z. Tan¹, Bryan Boudouris¹, Thomas Low², Juan Wachs¹

¹Purdue University, West Lafayette, IN ²SRI International

Thank you!

