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The Connected Car 
in the Cloud
A Platform for Prototyping 
Telematics Services

Tobias Häberle, Lambros Charissis, Christoph Fehling, Jens Nahm, and Frank Leymann

As cars turn into computers on wheels, it becomes vital to 
experiment with novel application scenarios and to envision 
suitable abstractions for integrating cars into existing enterprise 
information systems. This insightful project report tells the 
story of a prototyping platform for connected- car software and 
shares the project’s experience with a cloud- computing pattern 
language that helped drive the architectural platform design. 
—Cesare Pautasso and Olaf Zimmerman, department editors

CONNECTED CARS are hitting the 
road. Almost every automotive com-
pany has a solution for a connected 
car.1 We already use many con-
nected devices in our daily life—for 
example, smartphones and tablets. 
The connected car adds to this port-
folio with its own � avor.

This article shares our experiences 
delivering services for the connected 
car. We built the Connected- Car 
Prototyping Platform and reusable 
application templates to enable pro-
totyping of telematics services. The 
platform and templates simplify pro-
totype development and reduce time- 
to- market. They’re based on cloud 
principles to achieve lower initial 
setup costs for prototypes and better 
scalability.

Addressing the Challenges 
of Connected Cars
Providing connected services—that 
is, apps—for smartphones has be-
come simple owing to a range of 
frameworks and back- end plat-
forms such as Parse (https://parse
.com). Such frameworks and plat-
forms offer software development 
kits for many mobile platforms and 
programming languages. They typi-
cally provide services such as data 
storage, hosting, and analytics to im-
prove the development experience.

Connected- car platforms, how-
ever, present more challenges: longer 
life cycles (a car typically runs 10 or 
more years), less IT standardization, 
less reliable connectivity (typically, 
parked cars are of� ine), a bigger va-

riety of connectivity hardware, and 
so on. In addition, the automotive 
industry and the related multimedia 
industry are still unclear about cus-
tomer demand. There’s an ongoing 
discussion about the killer features 
for the next generation of connected 
cars.2,3 Without knowledge of future 
customer demand, time- to- market 
and � exibility become crucial.

To address these challenges and 
simplify development of telematics 
services, we built the Connected- Car 
Prototyping Platform. It provides a 
back end for applications interacting 
with cars. For us, the connected car 
is “just another” connected device 
similar to smartphones, watches, 
or even parking lots. The platform 
provides an  abstraction of such 
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 connected devices for developers. It 
also delivers services such as iden-
tity management and data stor-
age—for example, for nonrelational 
data. These services are the founda-
tion for many value- added services 
and applications. So, our platform 
offers a run- time environment for 
many telematics services. It also 

supports properties associated with 
cloud computing, such as self- ser-
vice for developers and dynamic 
scalability of hosted applications. 
To enable such properties, we em-
ployed cloud- computing patterns4

to design the platform and develop 
a reference architecture for hosted 
applications. Developers can focus 
on application functionality and 
don’t have to deal with infrastruc-
ture or middleware.

In addition, application templates 
provide architecture blueprints and 
code snippets, on which develop-
ers can base their application pro-
totype implementations. The tem-
plates homogenize prototype design, 
further accelerating application de-
velopment and simplifying runtime 
management.

To design the platform and tem-
plates, we applied Christoph Fehling 
and his colleagues’ design process.5

Each step of this process considers 
a certain set of the  cloud- computing 
patterns to use in the application 
architecture. (However, develop-
ers don’t need this process to create 

telematics service prototypes, which 
are based on the templates.)

Our design process had � ve steps:

• Decomposition divides the ap-
plication functionality into sepa-
rate components.

• Workload characterization esti-
mates component use over time.

• Data (state) management design 
identi� es stateful and stateless 
components.

• Component re� nement designs, 
in detail, functionality for user 
interfaces, processing, and data 
access.

• Elasticity and resiliency con� gu-
ration describes run- time behav-
ior to address workload changes 
and faulty components.

The patterns we used are at www
.cloudcomputingpatterns.org.

The Prototyping Platform
To design our platform, we � rst 
collected high- level functional and 
nonfunctional requirements as a 
baseline. We decomposed the plat-
form functionality according to the 
supported domains (see Domain- 
Driven Design: Tackling Com-
plexity in the Heart of Software6 

for more information on domain-
driven decomposition). This led to 
six application components (plat-
form services): identity and access, 
the telematics service repository, 

user pro� les,  billing, communica-
tion, and the virtual vehicle.

Figure 1 depicts these platform 
services and their data- handling 
capabilities. The services are iden-
ti� ed to address initial functional 
needs. They may then be consumed 
by other value- added (telematics) 
services, applications, or user front 
ends—for example, to recommend 
the most suitable fuel station or 
parking lot on the basis of the vehi-
cle’s location, fuel status, and so on.

The architecture speci� cally ad-
dresses the high degree of uncer-
tainty and the need for � exibility. In 
particular, workloads are unpredict-
able. They depend on factors such 
as the number of vehicles and users 
as well as possible resource- intensive 
applications running on the platform. 
So, we designed each platform service 
to handle unpredictable workloads.

The platform decomposes a ser-
vice into a business logic tier and a 
data tier, separating the services’ 
business logic from data storage. 
The separation of tiers and concerns 
allows independent scalability of 
each tier.

The business logic tier is the heart 
of each service, ensuring correct 
functionality. To ease scalability, this 
tier is stateless. State is either handled 
in the storage services or provided 
with each request to the tier. A cen-
tral load balancer handles scaling.

Data, such as vehicle positions 
and service intervals, is stored in the 
data tier, which therefore is state-
ful. The data can be stored indepen-
dently of applications or use cases. 
The consistency level at this tier var-
ies, depending on the underlying ser-
vice and its data classi� cation.

For example, we designed the 
identity- and- access service using the 
Relational Database and Strict Con-
sistency patterns because it holds 

To enable properties such as scalability, 
our design process considers cloud-
computing patterns in � ve steps.
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complex data relationships. The def-
inition of access policies is based on 
the association of users, vehicles, and 
services. Changes must be reflected 
immediately—for example, when ser-
vice access is revoked for a user. An-
other example is the virtual-​vehicle 
service, which provides an abstrac-
tion of vehicles. It stores dynamic ve-
hicle data in a key-​value format. For 
performance and availability rea-
sons, the platform distinguishes data 
with strict consistency requirements 
(for example, door lock status) from 
data with eventual-​consistency char-
acteristics (for example, a GPS posi-
tion as part of a GPS data stream). In 
our case, a platform service provides 
the data tier capabilities. So, the plat-
form can automatically scale this tier.

At the project’s start, we decided 
to base the implementation on open-​
source components. We did this to

•	 learn more about open source’s 
advantages and drawbacks in an 
enterprise environment and

•	 initially decrease setup costs to 
verify the ideas.

We implemented the platform ser-
vices in Java. Each service exposes 
a RESTful API over HTTP8 for in-
teraction (REST stands for Repre-
sentational State Transfer). We se-
lected ​Java-Script Object Notation 
as the data format to support mo-
bile applications. The business logic 
is deployed on a JBoss application 
server. We realized the data tier us-
ing HSQLDB (Hyper SQL Database) 
for relational data and Cassandra 
for nonrelational data. The plat-
form applies Cassandra’s tunable-​
consistency mode9 to satisfy dif-
ferent consistency requirements for 
nonrelational data.

The Application Templates
Our platform provides fundamental 
functionality that each telematics ap-
plication prototype can use, thereby 
reducing complexity for developers. 
However, developers will still spend 
significant time

•	 setting up and integrating the 
prototype’s fundamental archi-
tectural components and

•	 implementing code that’s in-
dependent of specific applica-
tion functionality and could be 
reused the same way in every 
application prototype.

So, to further speed up prototyp-
ing, we introduced the application 
templates.

The templates provide an archi-
tecture for telematics application 
prototypes that are from the same 
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FIGURE 1. The Connected-​Car Prototyping Platform architecture.7 Telematics applications are built on top of platform services, 

which are stateless. The applications’ data tier handles state for the platform services. Data storage depends on data characteristics 

(for example, key-​value storage for dynamic vehicle data).
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application domain and face simi-
lar requirements. An architecture 
by itself, however, will still require 
the developer to implement it. So, 
templates also offer the architec-
ture’s implementation. This imple-
mentation provides the required 
infrastructure and middleware com-
ponents and is available for provi-
sioning in one or more virtual server 
images.

Developers build application pro-
totypes by provisioning templates in 
a prototyping environment and en-
riching them with individual func-
tional code. So, they don’t have to 
worry about finding a proper archi-
tecture and selecting, integrating, 
and provisioning feasible middle-
ware products. Instead, they can fo-
cus on implementing the application 
functionality and generate added 
value faster.

The challenge when designing 
templates is to find an architecture 
that serves as a template for a possi-
bly high number and variety of po-
tential application prototypes. When 
trying to determine common require-
ments of application prototypes, 
we found we had to distinguish be-

tween two scenarios. The first sce-
nario deals with data analysis. The 
vehicle frequently sends data to the 
connected-​car platform; the data is 
stored persistently and then analyzed 
by a telematics application.

However, we focus here on the 
second scenario, in which telemat-
ics applications enable vehicle–user 
interaction. (At Daimler TSS, we 
frequently deal with this scenario.) 
With these applications, users can 
control a vehicle remotely, send in-
formation (such as locations) to the 
vehicle, or remotely view dynamic 
vehicle data such as the fuel state. 
Using this basic functionality, we 
can create advanced use cases that 
provide added value to users. For 
instance, by leveraging third-​party 
APIs, users can select the most suit-
able gas station on the basis of the 
vehicle’s fuel type, cruising range, 
current location, and destination, 
and the traffic volume.

To design a template for the sec-
ond scenario, we first decomposed 
the template into three functional 
blocks: user interface, processing, 
and data access. We did this be-
cause applications in this scenario 

typically require user interaction and 
the persistent storing of application-​ 
specific data, and must handle com-
putationally intensive tasks. When 
you’re designing application proto-
types, it’s often hard to foresee how 
intensively they’ll be used and to 
which user groups they’ll be exposed. 
So, the template architecture must be 
flexible enough to deal with unpre-
dictable workloads. A further design 
consideration is the application data 
state. Here, we designed the user in-
terface component and processing 
component to be stateless.

The template design resulted in 
implementation of a modified Three-​
Tier Cloud Application pattern. The 
three tiers might be exposed to dif-
ferent workloads. Depending on the 
application prototype use case, the 
processing component might have 
to deal with computationally inten-
sive tasks that require scaling, or it 
might be used less frequently than 
the user interface component. To 
achieve independent scalability of 
the application components, we in-
tegrated them in a loosely coupled 
manner, using message-​oriented 
middleware.

We discussed integrating the pro-
cessing component and data access 
component in a loosely coupled way 
as well, as proposed by the Three-​Tier 
Cloud Application pattern. However 
we didn’t expect the data access com-
ponent to face a high workload be-
cause the applications in this scenario 
rely mainly on platform services for 
data storage. So, we used remote pro-
cedure calls to access the data access 
component.

We employ a private cloud of-
fered by a VMware product suite 
because it provides high availabil-
ity of the virtual environment by 
replicating the underlying physi-
cal hardware. We didn’t implement 
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FIGURE 2. The architecture of an example application template. To provide maximum 

flexibility, the architecture is a modification of the Three-​Tier Cloud Application pattern.
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high availability at the application 
level because we didn’t consider it 
necessary for prototyping. So, elas-
ticity and resiliency configuration 
occurs later, when a prototype is 
productized. The Three-​Tier Cloud 
Application pattern forms the basis 
for such extensions.

Figure 2 illustrates the template’s 
architecture. We implemented it us-
ing Java Platform Enterprise Edition 
technology (see Figure 3). The user 
interface component implements 
Java Servlets and is deployed on 
an Apache Tomcat webserver. The 
Apache ActiveMQ message-​oriented 
middleware integrates the user inter-
face and processing components (to 
achieve loose coupling). The template 
leverages the Java Message Service 
(JMS) API to provide an interface 
with the messaging provider. The 
processing tier and data-​handling 
tier use the JBoss application server. 
The processing component can act 
as a Competing Consumer pat-
tern10 by using Java message-​driven 
beans. It also contains an HTTP cli-
ent to utilize prototyping-​platform 
services and access the data service. 
We implemented the data service as 
a RESTful webservice using JAX-​RS 
(Java API for RESTful Web Services). 
The storage component is a MySQL 
database.

All templates are Maven-​based 
Java projects stored in a central Ma-
ven repository. Ideally, more than 
one template is available for develop-
ers so that they can select the most 
suitable one for a specific application 
prototype scenario. For each tem-
plate, corresponding virtual-​machine 
images are available in the private 
cloud we mentioned earlier. These 
templates can be instantiated to pro-
vide the infrastructure and middle-
ware required to deploy the template-​
based prototypes.

We extended a framework pro-
totype11 to automate loading source 
code for templates into development 
environments. We further extended 
it to automate infrastructure and 
middleware provisioning and appli-
cation deployment. For that, we im-
plemented a jclouds (https://jclouds 
.apache.org) Maven plug-​in to en-

able interaction with a private-​cloud 
API. Maven plug-​ins also perform 
middleware configuration and pro-
totype deployment.

Discussion
We successfully used our platform 
to develop telematics services for  
a research-and-development group. 
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uses Java Platform Enterprise Edition technology. The user interface component and 

processing component are integrated in a loosely coupled manner using messaging, so 
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Overall, our pattern- based approach 
resulted in reusable functionality and 
guidelines that sped up development.

The current implementation is 
running successfully. Users can  easily 
create services using templates. The 

architecture has been robust enough 
to accommodate new requirements 
without fundamental changes. For 
example, we added a near- real- time 
capability to stream data from a car 
to the Web for live monitoring. We 
extended the vehicle’s connectivity 
unit and the platform with an of� ine 
capability that addresses cellular 
dead spots cars move through.

We found it’s important to en-
gage with IT stakeholders, especially 
IT operations staff, as early as pos-
sible to identify and avoid potential 
impediments. In the end, even small 
aspects might result in a complete 
showstopper owing to company 
policies or other corporate regula-
tions. Some of our devices rely on 
non- HTTP protocols and nonstan-
dard HTTP ports (ports other than 
80 and 443) when communicating 
over the Internet—for example, us-
ing MQTT12 as a transport protocol 
with custom ports. In an enterprise 
environment, the operations team 
will support such exceptions only if 
they’re discussed at an early stage.

We also learned that patterns 
serve as a good guideline. Because 
they reference each other, the knowl-
edge they provide doesn’t have to be 

accessed in a linear form. Neverthe-
less, the patterns didn’t address and 
solve all the architectural challenges 
we experienced. Patterns provide 
good hints on how to solve most 
challenges. However, they can still 

be incomplete or ambiguous with 
many implementation options, or 
they might not cover all the require-
ments. The following four examples 
illustrate such situations.

First, in our case, the architecture 
serves only a little traf� c at the be-
ginning. However, it should be able 
to serve a rapidly growing number 
of vehicles and consumers—up to 5 
million clients. The patterns we use 
enable the platform and deployed 
applications to scale as the number 
of users grows. However, additional 
challenges might arise—for example, 
if the amount of application data in-
creases unexpectedly. So, in the fu-
ture, the complete architecture might 
require adjustments.

The second example involves 
data consistency. To deal with a 
large amount of data (for example, 
a � eet of several million cars send-
ing regular status events), the best 
practice is to partition the data into 
separate consistency levels—for ex-
ample, strict versus eventual con-
sistency. In our case, this approach 
requires different database technol-
ogies, which increases implementa-
tion and maintenance effort. The 
Data Access Component pattern re-

duces effort for application develop-
ment and maintenance but not for 
database operations.

The use of different database 
technologies and consistency levels 
has led to new challenges affecting 
various stakeholders and supported 
business cases. The operations work-
force must have a larger skill set to 
support different database technolo-
gies. Users evaluating the data must 
learn to acknowledge that it might 
not always be up to date. Finally, the 
business cases that such technologies 
support must take into account data 
inconsistencies. Patterns addressing 
these challenges seem a promising 
research area.

Third, the patterns cover how to 
use cloud offerings but not how to 
actually build a cloud. This is be-
cause they target application devel-
opers, not cloud providers. To de-
sign our platform, we modi� ed the 
Three- Tier Cloud Application pat-
tern, as we mentioned before. We 
added the central load balancer and 
designed the platform services as in-
dependent components. However, it 
would be helpful for cloud providers 
to have a pattern that provides initial 
guidelines.

 The � nal example deals with ex-
tending the patterns to deal with 
wearable technology and the Inter-
net of Things. Wearables such as 
smart watches are a rapidly growing 
market for connected services. These 
devices come with new interaction 
models and new technical charac-
teristics. As with cars, such devices 
aren’t always on; patterns dealing 
with queuing, caching, and synchro-
nization would be bene� cial. Also, 
one aspect of the Internet of Things 
is the growing number of sensors 
and actors. Patterns could help deal 
with the complexity and could ad-
dress, for example, identity and con-

Patterns provide hints on how 
to solve most challenges but can 
be incomplete or ambiguous.
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� guration management, or data ag-
gregation and � ltering.

Patterns don’t solve all problems 
automatically. They can be misused 
if they’re misunderstood. So, an ex-
perienced architect should validate 
the selected patterns for their appli-
cability and perform a critical cross- 
check on the overall scenario.

W e plan to create tem-
plates covering a variety 
of application scenar-

ios and provide them to developers. 
Making the templates available in a 
central repository on the Internet will 
let developers select and download 
those that help them most in their 
current use case. The community 
will also be able to provide its own 
templates. Maven already proved to 
be a usable repository in the current 
setup. Its robustness and scalability 
in a broader setup—for example, for 
use by a larger group of developers—
needs further investigation. 
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