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Current Process
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Network Monitoring and Inspection
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FORCES research

Numerous applications in oil and gas industry

* Optimal sensor placement for failure diagnostics
* UAS-enabled sensing and inspection

* Resilient control in the face of disruptions

* Analytics driven failure models of critical assets

e Related issues:

* Incentives for utility (regulated monopolist) in
investing in monitoring technology and resources

* Cyber-physical security attacks
0 Wi [ QL Amin
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Monitoring large-scale networks facing
disruptions

* Resource allocation problem for monitoring infrastructure

networks facing disruptions (both random & adversarial)

 Students: Mathieu Dahan (CSE PhD), Andrew Lee (TR PhD)
FORCES collaborators: Lina Sela, Waseem Abbas, Xenofon Koutsokos

e Papers: Automatica 16, ACM BuildSys 16, Allerton 16, ICCPS 17, ICUAS
17, Submitted to Operations Research

* Industry collaboration: 3 LGO Students interned at PG&E and 1 LGO
student interning at National Grid

* (Potential) Impact:

 Allocation and tasking of sensing systems to identify failures and
minimize time to repair in large-scale water and gas networks

e PG&E’s seismic damage prediction model by incorporating dynamic
information from sensing systems and response crews
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Monitoring large-scale networks facing
disruptions

* Key features

* Strategic interaction

e Resource limitations

* \Very large (combinatorial) action sets

 Dynamic and asymmetric information
P1: Allocate sensors

Example settings Our focus: Allocation of sensing resources
+ Hide-and-seek games | in adversarial environments
« Network security * Incorporate a generic sensing model

e Search and surveillance |* Ensure desirable performance guarantee

* Infrastructure defense (detection rate)

 Compute optimal (equilibrium) allocation

| § | °
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Network monitoring problem under
strategic disruptions

 Large-scale infrastructure network facing strategic o ﬁ
disruptions (attacks) b m

 Sensing model: detect or not based on location of Z
sensor and components >O

e Attacker: simultaneous edge disruptions
 Operator: (random) sensing over subset of nodes

 Objective: Maximize # of detections (operator)
Maximize # of undetected events (attacker)

Question: How many sensors are required and how to strategically allocate
them in the network to detect adversarial attacks?

Formulation: Mathematical Program with Equilibrium Constraints (MPEC)
Minimize # of number of sensors to guarantee that

* Expected detection rate > threshold in any equilibrium of induced game
* Find an equilibrium
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Our approach

e Study equilibrium properties of operator-attacker game
e Construct an e-Nash equilibrium based on solutions of

e  Minimum Set Cover [MSC] problem: operator strategy is to
randomize over MISC

« Maximum Set Packing [MSP] problem: attacker strategy is to
randomize over MSP

e Compute an approximate solution of the MPEC:
 # of sensors with optimality gap
e Guarantee(s) on detection performance

Main advantages:

e Scalable to very large networks

* Small optimality gap in most practical cases

* When |MSC|=|MSP|: We obtain an exact solution, and generalize some
classical results on hide-and-seek and network security games

 Does not require an exact knowledge of the attacker’s resources

[ B |
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MSC-MSP based strategy profile
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Main ideas

* Main case of interest: large network and limited resources
 (# of sensing resources) < |MSC| and (# of attack resources) < | MSP|
* Two tools:
e Strategic equivalence of zero-sum games

 Linear programming (LP) duality, but LPs are too large to compute NE

MSC (coverage) and MSP (spread)

Weak duality; Both problems can be solved using integer programs

Three techniques:
* Construct MSC-MSP based strategy profile
* Exploit properties of sensing model:
 Monotone submodular (with respect to sensor placements)
e Additive (with respect to attacks)
* NE properties
* Both players necessarily randomize
* Each player uses all available resources
e Sensing strategies in equilibrium “cover” the entire network
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Tasking mobile sensors for network monitoring

How to optimally allocate and route mobile sensing systems to

identify failures within localization sets, to minimize the worst
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Two Problems
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Formulation for the RVRP

Find optimal route(s) for the repair vehicle(s) to the
localization sets.
* Objective: Minimize the maximum amount of time

elapsed from time of failure alert to time of repair
among all localization sets
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RVRP

* Objective: Minimize the maximum amount of time
elapsed from time of failure alert to time of repair
among all localization sets

e Subject to:

— No more than N repair vehicles dispatched from each yard
— Flow conservation constraints
— Each localization set is visited by only one repair vehicle

— Constraints to bound the time of arrival at yard or
localization set

— Update time of arrival by taking into account the vehicle
travel time as well as the time to repair and the optimal
SUAS exploration time for each localization set

— Routing constraints imposed by transportation network



SNEP

* Objective: Minimize the maximum time to observe all
network components, over R available sUASs.

e Subject to:
— No more than R sUASs are used
— Depart and return to temporary base 0,
— Each monitoring location visited at most once in L,

— sUAS can monitor a subset of network components from
each monitoring location; each network component is
monitored at least once

— Allow multi-trips; flight travel time constraints for each trip
(incorporates recharging)

— Total cumulative travel time for all trips by each sUAS

— Airspace restrictions, communication requirements, and
other safety considerations



Computational Study
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SNEP

Set up:

e Temporary base (), at node 16

Maximum time for battery life: 1 hour; Time to charge battery (if needed): 5 min

* sSUAS can monitor adjacent edges incident to node

* sUAS travels along edges of network (can be generalized)

* Shortest path travel times between each pair of nodes

* Objective is to minimize the maximum amount of time (among all SUASs) to
explore ;.



Computational Study
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Results and Insights

e Solutions sensitive to failure alert duration
prior to dispatch, ¢,

* RVRP solution sensitive to &;.

* Computational bottleneck with determining &;
— Heuristic approach &



Summary

e Main Contributions

— Operational end to end framework for infrastructure
monitoring and inspection using sUASs

— Development of MIP models for the RVRP and SNEP

e Other applications: Disaster and Emergency
Response

e Relation with other FORCES research:

— Safety preserving learning and control (Tomlin)
— Airspace regulations (Balakrishnan and Tomlin)
— Cyber-Physical security (Koutsoukos, Sastry)



