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Distributed learning dynamics in routing games ()
— Each player routes population k according to distribution p ~ x,
(corresponding to one OD pair) )
— At each iteration, the population k discovers their outcome ¥,

<

h - E .-

3171 T 2NN
DL e

bl 7 D 5T

ol

D#IONS OF RESILIENT
HPHYSICAL SYSTEMS




Problem formulation

Distributed learning dynamics in routing games

— Each player routes population k according to distribution p ~ X;((
(corresponding to one OD pair)

t)

— At each iteration, the population k discovers their outcome ng)

— The routing of pofpulation k at the next step is subsequently updated

according to the following law (%) — (x}j),eff))

Online Learning Model

1: fort € Ndo
2: Play p ~ x;((t)

3: Discover Eit)
4. Update x£t+1) = uy (x’,((t), Eit))

Page 5: End fﬂr
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Distributed learning dynamics in routing games

— Each player routes population k according to distribution p ~
(corresponding to one OD pair)

(t)
Xk
— At each iteration, the population k discovers their outcome eg)

— The routing of population k at the next step is subsequently updated
according to the following law ,{+2) _ (X;(f)’fff))

1 Environment
learning algorithm outcome
:EE:-H) —u (:cf), f;(:)) E,S:J

Agent k |
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Distributed learning dynamics in routing games

— Each player routes population k according to distribution p ~
(corresponding to one OD pair)

N

— At each iteration, the population k discovers their outcome ES)

— The routing of population k at the next step is subsequently updated
according to the following law ,(+2) _ (X:(f)’fff))

| Environment
| Other agents
learning algorithm outcome
o = u (o, 6 (2., 29)
Agent k




Coupled sequential decision problem

This also represents the process of apps (companies) routing users
— Each gives shortest path (given previous information)

— Previous information is mostly statistical (experience from previous
day and some statistical forecast) — -

All paths proposed are nearly equal:
_ ShorteSt path (55mln5) o = 55in @ 3hr8 f 11hbr . 3hr22

— Third shortest path (58 mins) A
— Second shortest path (56 mins) ‘@@‘SMSM
@
Routing does in general not depend on \ % i AN
— Forecast of the network loading 5 £ P
using demand data (incomplete today) N ;‘ Ay
— Forecast of the network using potential Ng
impact of routing (i.e. routed users) on @ = ®
the network SIOWET w % 3m,1 = ___as
— Knowledge of what competitors of the app T 6
are doing (in the present case, Apple, S5 min (37mi) 6
INRIX’ 511, etc.) (‘ FO RCES Fastest route, the usual traffic
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Coupled sequential decision problem
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All users of each company “equ stgRdafds of the company i.e. same
Page#  (shortest) travel time accordmg—t’o thercompany, “essentially” Nash.



Distributed learning in games

Non equilibrium situations
— Equilibria: good description of system efficiency at steady-sate.
— But systems rarely operate at equilibrium, hence
— A prescriptive model: How do we drive system to eq.
— A descriptive model: How would players behave in the game.

Goals of the work
— Define algorithm classes for which we can prove convergence
— Robustness to stochastic perturbations.
— Heterogeneous learning: different agents use different algorithms
— Convergence rates.

Related work

— Discrete time: Hannan consistency (Hannan 1957), Hedge algorithm for
two-player games (Freund 1999), regret based algorithms: (Hart 2001),
online learning in games (Cesa 2006%

— Continuous time: Potential games under dynamics with positive correlation

condition (Sandholm 2009 )sre gﬁgnamics in evolutionary game
e theory (Weibull 1997), no-regnet dynamics for two player games (Hart 2001)




Main problem

Define class of algorithms C such that

u, € C Vk = x{)

Important question: what is X’

population k

>~ {4 < Online Learning Model

< f N 1: fort € Ndo

VAN (1)
& 2: Play a ~ x.

3: Discover ﬂs(t)
k 4: Update x,((t"'l) = uy (x,((t),ﬂg(t))

RCES 5: end for
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Nash equilibrium

Write
x=(x1,...,XK) € AAL x ... x AAK
Ux) = (£1(x), - .-, Lk(x))

Nash equilibria X'*

*

x* is a Nash equilibrium if for all k, paths in the support of x;° have minimal loss.

Vx, ({(x*),x —x*) >0

’ / .\‘x
population k o
—W lllll | : Featald
t Tt BA T A et T ror
p ~ X‘(( ) § 7 I-lc'.r.".a; \ &
kr 'E’%———H“‘" ~— ‘ ch=rr
i D | i \ \ N Pemonc
< ¥ g B oA
Z=0 R OV £ Chir
’]L;w, **** —_— \ — e
g\/{s) / No incentive to deviate

from shortest path
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Equilibrium of a game: tangential condition

Write
x=(x1,...,XK) € AAL x ... x AAK
Ux) = (£1(x), - .-, Lk(x))

Nash equilibria X'*

x* is a Nash equilibrium if for all k, paths in the support of x;° have minimal loss.

Vx, (€(x*),x —x*) >0

Rosenthal potential
3f convex such that Vf(x) = £(x).

Nash condition & first order optimality
Vx, (6(x*),x —x*) >0 Vx, (VFf(x*),x —x*) >0




Equilibrium of a game: tangential condition

Write
x=(x1,...,XK) € AAL x ... x AAK
Ux) = (£1(x), - .-, Lk(x))

Nash equilibria X'*

x* is a Nash equilibrium if for all k, paths in the support of x;° have minimal loss.

Vx, (€(x*),x —x*) >0
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Approach 1: regret analysis

Interpretation of the regret and the convergence

— Cumulative regret models the comparison of playing over time the best

strategy possible (without changing it), and comparing it to the strategy
obtained by the game.

— In the case of sublinear regret, the game converges on average
towards a Nash equilibrium

— Good for optimization purposes

— Bad for g)perational purposes (no guarantee on what the outcome of the
game is

Cumulative regret

R,((t) = sup Z <X,((t) - Xkaek(x(t))>

(1)
“Online” optimality condition. Sublinear if limsup, = < 0.

Convergence of averages

[Vk, R,((t) is sublinear] = x(t) 5 x*

20 = 157 (),



Figure: Example with strongly convex potential.

o Population 1: Hedge with n} = t=1
o Population 2: Hedge with n? = t—1
Page & w RIS WA
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Path losses £.4, (x")
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Approach 2: stochastic approximation

[dea:

— View the learning dynamics as a discretization of an ODE
— Study the convergence of the ODE

— I?]elzgeDtge convergence of the discrete algorithm to the convergence of
the

In Hedge x§t+1) X x‘gt)e_"fe(at), take n: — 0.

Replicator equation [25] 0 i M+ n2
O O O

Figure: Underlying continuous time

Definitions:
— Tt Discretization (in time)
— Xa Distribution of flow along one arc
— A Set of arcs for population k

Pag
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AREP: approximate replicator dynamics

[dea:

— View the learning dynamics as a discretization of an ODE
— Study the convergence of the ODE

— I?]el%eDtEhe convergence of the discrete algorithm to the convergence of
the

In Hedge x( o ) ( )e_”fe(at), take n: — 0.

Replicator equation [25] 0 m . < i
O O O
dx Fi . Underlvi . .
Va € Ak, d_ta — o (<e(X),X> . ea(x)) igure: Underlying continuous time

Discretization of the continuous-time replicator dynamics

A _ oy

- (r) (<£(X(r)) (r)> s (X(t))) n U(t+1)

Benaim, Dynamics of stochastic approﬁtl@ﬁg 1999

OOOOOOOOOOOOOOOOOOOOOO
SSSSSSSSSSSSSSSSSSSS
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AREP: approximate replicator dynamics

[dea:

— View the learning dynamics as a discretization of an ODE

— Study the convergence of the ODE
— I?]el%eDtEhe convergence of the discrete algorithm to the convergence of
the

dx;

—e = %a ((£(x), x) = £a(x))

Discretization of the continuous-time replicator dynamics

X‘gt-l—l) . Xcgt)

e = X;(,t) (<£(x(t))’x(t)> _ ga(x(t))) 4 Ua(.t+1)

@ 7; discretization time steps.

) (U(t))tzl perturbations that satisfy for all T > 0,

. T2 t+1 —_
7y o0 max,, 57z g || 2, m U =0
1+ 9
(a sufficient condition is that 3g > 2: sup_ E ||[U||9 < oo and > 777+2 < o0)



AREP: approximate replicator dynamics

[dea:

— View the learning dynamics as a discretization of an ODE
— Study the convergence of the ODE

— Relate the convergence of the discrete algorithm to the convergence of
the ODE, but no convergence rates

In convex potential games, under AREP updates, if n: | 0 and > n: = oo, then

x(t) 5 x* as.

o Affine interpolation of x(t) is an asymptotic pseudo trajectory of ODE.

-— ey

- ~
s 1) N

/ L] \

|

W. ;
X ' (),

N\ /
~ -~

_ -

@ Use f as a Lyapunov function.



AREP: approximate replicator dynamics

[dea:
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AREP: approximate replicator dynamics

[dea:

— View the learning dynamics as a discretization of an ODE
— Study the convergence of the ODE

— Relate the convergence of the discrete algorithm to the convergence of
the ODE, but no convergence rates

In convex potential games, under AREP updates, if n: | 0 and > n: = oo, then

x(t) 5 x* as.

o Affine interpolation of x(t) is an asymptotic pseudo trajectory of ODE.
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@ Use f as a Lyapunov function.



AREP: approximate replicator dynamics

[dea:

— View the learning dynamics as a discretization of an ODE
— Study the convergence of the ODE

— Relate the convergence of the discrete algorithm to the convergence of
the ODE, but no convergence rates

In convex potential games, under AREP updates, if n: | 0 and > n:

= 00, then

x(t) 5 x* as.

o Affine interpolation of x(t) is an asymptotic pseudo trajectory of ODE.

- -
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Ve

[ (42 \

, x(l) S /—\l%w(k_l))\,‘
\1¥/ X(k?\_\\h ,
% N C
B (x()) ,‘ \ /

~ -~

—_ =

@ Use f as a Lyapunov function.



ue: discretized AREP
Red: continuous trajectory of replicator dynamics
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Approach 3: convex optimization

ldea:
— View the learning dynamics as a distributed algorithm to minimize the
function f.
— Allows us to analyze convergence rates.
Here:

— Class of distributed optimization methods: stochastic mirror descent

minimize f(x) convex function

subjectto x€ X C RY convex, compact set

Bregman Divergence

Strongly convex function

Dy (x,y) = ¥(x) —9¥(y) — (VY(y),x — y)




minimize f(x) convex function

subjectto xe€ X C RY  convex, compact set

Algorithm 2 MD Method with learning rates (7;)

1: for t € N do
2. observe /1) ¢ af‘(x(f)) )
3 ) = arg min (409, x) 4 =Dy (x, x11))

4: end for

@ 7:: learning rate

o D, (=)

Bregman Divergence

Strongly convex function ¢

--- f(z®) 4+ (O gz — z®)

Dy (x,y) = ¥(x) = 9(y) = (Vi(y), x — y)




minimize f(x) convex function

subjectto xe€ X C RY  convex, compact set

Algorithm 2 MD Method with learning rates (7¢)

1. for t € Ndo
2:  observe Eg(t) € 0 f(x(1)

3: x,((H_l) = arg min <£E{t) x> + r,,lthbk (x, x,Et))

XEXk

4: end for

@ 7;: learning rate

WO > Bregman divergence J

Bregman Divergence

Strongly convex function ¢

Dy (x,y) = ¥(x) = 9(y) = (Vi(y), x — y)




minimize f(x) convex function

subjectto xe€ X C RY  convex, compact set

Algorithm 2 SMD Method with learning rates (7))
1: for t € N do
2:  observe @f) with E [@Ef”]—}_l] € A f(x(1)

A i (1) 0,0

xEXk

4: end for

@ 7:: learning rate

WO  Bregman divergence

--- f(z®) 4+ (O gz — z®)

Bregman Divergence

Strongly convex function ¢

Dy (x,y) = ¥(x) = 9(y) = (Vi(y), x — y)



dr = Dy (X*,x(7)).

Main ingredient

2
E[d1'+1|-7:1'—1] S df—ﬂr(f(X(T)) - f*)+72]_; £ [|I€(T)|Ii|-FT—1:|

From here,

o Can show a.s. convergence x(t) — X* if 3 m; = oo and 3_n2 < oo
d; is an almost super martingale [19], [5]

Deterministic version:
If dr41 < dr—a-+b-, and > br < o0, then (d;) converges.

[19]H. Robbins and D. Siegmund. A convergence theorem for non negative almost supermartingales and
some applications.
Optimizing Methods in Statistics, 1971

[5]Léon Bottou. Online algorithms and stochastic approximations.
1908



@ To show convergence E [f(x(t))} — f*, generalize the technique of Shamir et
al. [22].

Convergence of Distributed Stochastic Mirror Descent

For nk = ti—"k, ay € (0,1),

E [f(x(t))] _fr =0 Z log t

k

tmin(ak,l—ak)

Non-smooth, non-strongly convex.

» More details

[22]Ohad Shamir and Tong Zhang. Stochastic gradient descent for non-smooth optimization:
Convergence results and optimal averaging schemes.
In ICML, pages 71-79, 2013

[12] Syrine Krichene, Walid Krichene, Roy Dong, and Alexandre Bayen. Convergence of heterogeneous
distributed learning in stochastic routing games.
In 52rd Allerton Conference on Commiinication Control and Combpiitine 2015




— Each player routes population k according to distribution P~ X

(corresponding to one OD pair)

(t)

t
— At each iteration, the population k discovers their outcome gé)

— The routing of population k at the next step is subsequently updateu
e (40, 49)

according to the following law

Environment
| Other agents

learning algorithm

:BECHI) —u (mg), EE:))

Agent k &

o Regret analysis: convergence of x(t)

Ok (

outcome

t t
zy’,...,2)

@ Stochastic approximation: almost sure convergence of x(t)

@ Stochastic convex optimization: almost sure convergence, E [f (x(t))] — f*,

E [Dy(x*,x(t))] — 0, convergence rates.



Figure: Example with strongly convex potential.

o Population 1: Hedge with n} = t=1
o Population 2: Hedge with n? = t—1
Page & w RIS WA



Population 1

Population 2

Page &>

0.8

0.6

()
P

0.4

0.2

e

Mass distributions x,((t)

— path po = (vo, v4, v6,v1)
- - - path p; = (vo,v4,v5,v1)
----- path py = (v, 1) .
1 A L
50 60 70 80 90 100
T
I I 1 1 1
— path p3 = (v2,v3)
ey path Py = (02,1)4,1)5,’03)
-~ - path ps = (vq, v4,V6,v3)
| | 1 1 1 1 | |
0 10 20 30 40 50 60 70 80 90 100
T

S

Path losses

ek(x(t))

af
_ 15
E :
Gh
<§;a'
1
0.5 U

2

T

1 I I 1

%, ,{~ =~ path p1 = (vo,v4,v5,01) |

— path po = (vo,v4,ve, V1)

R

- = - path py = (vp,v1)

I I

—— path p3 = (v2,v3)
- - - path py = (v2,v4,vs5,03)
o _path P5 = (‘021”41”61”3)

FORCES

FOUNDATIONS OF RESILIENT
CYBER-PHYSICAL SYSTEMS



101 T T T T T T T T T T T T | J !

_nl — t_l, n2 — t_l

10° E

’: | .
& 1071k :
x o Tt i
B T |

Q ------
Q 1072 el E
) T |
L E
10_4 I I I T R | L L I L I I I t|""-
10° 10! 102

Figure: Distance to equilibrium.
0 —a
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Input

Logout

|dea of the game: study non-cooperative behavior of routing applications
““managers”

— As if Google was “playing against” Apple, INRIX etc.
— Study evolution of distribution over successive iterations

WO W1 N2 m3

H2 m3

Path Previous cost Cumulative cost Weight ' Current Flows  Previous Flows
Path0 0911 17.921 e " Iy 0.407
Path1 0915 20.056 0.098 0.098
Path2 0.922 20.356 0.114 0.114
Path3 0.927 20.198 0.102 0.102
Path4 0916 19.656 0.134 0.134
Path5 0.910 19.696 0.146 0.146
Show edge costs Clear edge costs
e ——.
i === -
....... UL S B S n L L L S L S B L N e




Practical game implementation: field experiment

|dea of the game: study non-cooperative behavior of routing applications
“managers”

— As if Google was “playing against” Apple, INRIX etc.
— Study evolution of distribution over successive iterations

Each “manager” has knowledge
of the network

FO RCES

Paged . . .. ... g FOUNDATIONS OF RESILIENT
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|dea of the game: study non-cooperative behavior of routing applications
““managers”

— As if Google was “playing against” Apple, INRIX etc.
— Study evolution of distribution over successive iterations

Input

Path Previous cost Cumulative cost Weight n Current Flows  Previous Flows
Path0 0911 17.921 ssssssssssseeel) 0407 0.407

Path1 0915 20.056 ﬁ 0.098 0.098
Path2 0922 20.356 f 0.114 0.114
Path3  0.927 20.198 —ﬁ 0.102 0.102
Path4 0916 19.656 w ) 0.134 0.134

Path5 0.910 19.696 ﬂ 0.146 0.146

Show edge costs Clear edge costs

Through an interface he/she can choose
the distribution of his/her flow on the network
(for the game: on one OD pair)

<> FOUNDATIONS OF RESILIENT
Page # \) CCCCC -PHYSICAL SYSTEMS



““managers”
— As if Google was “playing against” Apple, INRIX etc.
— Study evolution of distribution over successive iterations

Depending on the setting: each user can see a subset (or all) of:
- His/her costs at each iteration

- Cumulative costs (performance) over the games
- History of plays (i.e. how he/she allocated the flows previously)

Previous Cost

1.300 4
1.200 4

1.100 4 \ A

1.000 4

09004 /P

0.800 -
0.700
0.600
0.500

mO

L B

H2 W3 m4 WS

Cumulative Cost

22.000
20.000
18.000
16.000
14.000
12.000
10.000
8.000
6.000
4.000
2.000
0.000

|||||||||||||||||||||||

HO 1 N2 W3 W4 E5

0.450]
0.400
0.350
0.300
0.250
0.200
0.150
0.100
0.050

Previous Flows

HO N1 N2 N3 W4 W5



Game process




(@0, 80,
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o We observe a sequence of player decisions (x{t)) and losses (£(t)).

@ Can we fit a model of player dynamics?

Mirror descent model

Estimate the learning rate in the mirror descent model

x{&1) (1)) = arg min <Z(t),x> + 1D,K,,_(x, x(1))
xe A4k n

Then d(n) = D (X(tT1) x(t+1)(57)) is a convex function. Can minimize it to estimate

n(f)
ko (B )
!
e - —(t)
1 xr
Ls -
| ERE)
|
=z 7®)
$ O Server —
&,87,...)
e - —(t)
; T
s 3

Page &>
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Previous Cost

6.500-]
6.000-]
5.500-]
5.000-]
4.500-]

4.000 4

Path Path's previous cost

Path 0 5.217

Path 1 5.077

Path 2 5.106

Path 3 4.966

Path 4 5.061

Path 5 4.921

Wht Current Flows

F 0.069
F 0.069
r 0.057
r 0.161
0.046

0.52
< 0.598

Previous Flows

0.069

0.069

0.057

0.161

0.046

0.598

Show edge costs Clear edge costs

o

Page &>

| B

m2

H3

w4

us

Ho W1 W2 W3 W4 NS

Want to work on this HIT?
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Normalized cost’ Tk
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— Predicted distributions T

— Actual distributions
As a function of the prediction horizon h
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Back to Coupled sequential decision problem
Waze Google Apple INRIX Bing (Microsoft)

A B Gl @ 19:04 . o 5 % B3 ATET = 8:22 AM
SO 1stof 3 St e

INRIX KOSMISCHNET

0.4 miles
Golden Gate Bridge || Stay on §lI} NORTH ’
eraSt | 18th Ave = 12th Ave 12 mito|414BA El}ﬁllrelge bl n g ma pS

thell
ne North City Sothg Woodinville |

Sheridan Beach

mish
Buttermilk Falls . BeBlix Art U
State Park vilke Sa
m .‘5. 3 ,g O Bellevue
e | 90/ Mercer
8 ] Island gastgate

15 m5|n42 P4I\g miles VD 7.3 = ‘ ! :;J Bryn Mawil [
l Pwaze ~ T%f)aae PGoogle ™ :L‘gz)og]e PApple ~ xEQ)ple PINRIX ™ m%ltV)RIX DPBing ™~ m%%l)ng
30% 62% 40% 0% 100% 12% 79%
8%
All users of each company equ stgRdafds of the company i.e. same

Page#  (shortest) travel time accordlng—t’o thercompany, “essentially” Nash.



The “LA problem” (soon in a city near you)

El

BLOG g -bLW GETHELP TALKTOUS PERFORMANCE ABOUT

Press Releases

Home — Media — Press Releases —

Mayor Garcetti Details Agreement with
WAZE to Help Reduce Congestion,
Increase Safety, and Improve Driving
Experience Around L.A.

Posted by Mayor Eric Garcetti on April 21, 2015 - Flag

App will feature first-ever hit-and-run notifications and AMBER Alerts to aid
public safety

Mayor Garcetti today announced the details of a data-sharing agreement
between the City of Los Angeles and Waze, an agreement he previewed in his
State of the City Address last week. The Waze app is used by more than 1.3

Building the city of our
dreams starts with you,
sign up!

or sign in with

et Mayor Eric Garcetti @
<
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The “LA problem” (soon in a city near you)

BLOG g -bLW GETHELP TALKTOUS PERFORMANCE ABOUT

Building the city of our
PreSS Re' €ases dreams starts with you,

sign up!

Home — Media — Press Releases —

Mayor Garcetti Details Agreement with :W

WAZE to Help Reduce Congestion, i

Increase Safety, and Improve Driving
: % Experience Around L.A.

Fn':.'m 4 Mayor Eric Garcetti @

27,775 people like Mayor Eric Garcetti.

1
2o d
|

e NG
" 2 @ ABOUT HOW PORTFOLIO INSIGHTS  CONTACT Q

= Los Angeles and Waze Team Up to Combat Traffic

Congestion

When Americans think of traffic they think of Los Angeles, even if they’ve never visited. So it makes sense that the LA mayor’s office has
announced that the city is partnering with traffic app Waze to help combat the congestion. The deal allows data to be shared between the
two parties—the city will alert Waze about hazards, construction and crashes while the app will give the city a wealth of data to analyze how

traffic moves. Ideally this will allow for changes that will improve commutes.
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The “LA problem” (soon in a city near you)

= SECTIONS m gﬁgmn ®[ghe Q SEARCH

Today's top tech event

Find a Startup Job You'll Love: Meet Startup Institute Boston Details
2 More events

GOOGLE

Boston partners with Google's Waze app to improve traffic flow in the
city

Every day is

a big day for
Small Business.

BetaBoston in your email

Waze logo added to a recent photo of the Southeast Expressway via BARRY CHIN/GLOBE STAFF 4
™ Daily
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Subscribe to CNET Magazine

Reviews News Video How To Games

Download

Log In / Join

CNET > Internet » Locals upset at Google's Waze for sending traffic to their streets

Locals upset at Google's Waze for sending
traffic to their streets

LA residents complains that Waze creates congestion on roads once only known to those who live there.

by Donna Tam W @Donna¥Tam / December 14, 2014 11:25 AM PST

3+

Tailor your cloud to your app.
Not the other way around. ~ "exiosemie b aous -

@ rackspace

The residents of neighborhoods in Los Angeles
County are not happy with Waze, Google's
crowdsourced mapping app. It's sending the area's

infamaniis fr traffic nnto their once ouiet

° THIS WEEK'S MUST READS /

Locals upset at Google's Waze for
n . i . te
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The “LA problem” (soon in a city near you)

Subscribe to CNET Magazine

[:|net Search CNET

Reviews How To Download

Log In/ Join

CNET > Internet

LA residen

» Locals upset at Google

Locals

's Waze for sending traffic to their streets

pset at Google's Waze for sending
traffic to their streets

s complaing that Waze creates congestion on roads once onlv known to those who live there

The residents
County are noj
crowdsourced|

infamaniis froe:

by Donna Tam W

Into
hte Helps
e's How.

Page

king?
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“wRATTER#'*

Waze Has No Concept Of The Hell That Is
LA Traffic

9 Brittany Malooly

‘Waze markets itself as a hip, modern, community-based app that helps urban drivers save time
and stay safe on the road, but Waze is the very same company that is repeatedly fucking over

Angelenos during rush hour traffic.

Ads by Google

CA Online Traffic School
California DMV-Licensed Course. Easy To Pass! 24/7 Support - $13.95
idrivesafely.com/CA-Traffic-School

Waze consistently recommends something people are referring to on Reddit as the “suicide
left,” which entails turning from a small side street onto a busy, multi-lane road during peak
traffic hours without a stoplight. Other users also complain that the app will suggest clearing the
entire road straight across. Not only do these options waste time as drivers either wait for a

chance to cross or turn, but these suggestions are also dangerous.
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The “LA problem” (soon in a city near you)

pandodaily EVENTS VIDEO AUDIO PANDOLAND wlflim[s+ 5] Q]
PERMANENT 77 )} /7 a0 N TRTUIT 5 Sporsoresty
STARTUP SCOB(oy (mte) ittt HACKING , Q) O New Relic

www//  Developer

M aeet) 136 8aj\ 17 m 2> Subscribe to our PandoDigest Newsletter!
‘Email Address Subscribe

stop side-street congestion M

“These are not startups.” Elizabeth

g:l hNAg:VHEI;;EBLE%A%N%u Warren is worried about big tech — and

Angry LA residents are trying to sabotage Waze data to

big banks — influencing politics

BY DENNIS KEOHANE about an hour ago

Seymour Hersh and the dangers of
corporate muckraking

BY MARK AMES about 4 hours ago

Here’s some of the stuff Google
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f3BNY

ABOUT  STAFF CONTACT

GEICO.
- 15%... need | say more?

my news

LA...

CRIME

GOVERNMENT BUSINESS EDUCATION SPORTS HOLLYWOOD LIFE

LATEST NEWS La Mirada man accused in murder of his wife in 1992 arrested in Antigua

Home » Government » This Article

‘Cut-through’ traffic caused by Waze app
must stop, L.A. councilman says

2.5 miles
376 E. Crawford Ave.

A Los Angeles city deal with traffic app Waze may be great, but
some local communities are being inundated with “cut-through”

traffic that must stop, a Los Angeles City Councilman said
Tuesday.

— - <
g In 0.5 mi

7 4 Not there

B ‘b. Paul Krekorian introduced a motion to help local
T ® neighborhoods, saying Waze should send drivers away from
Hayps 8t residential streets and onto major roadways as part of the
P el company’s data-sharing agreement with the city.

Mayor Eric Garcetti announced last week that the city is sharing
road closure data with Waze to improve its service, and in

ratiirn the citv ic oattino live 11indate

22:56

20 min 22 mil

ann 3 nattarn
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The one (?) million dollar question

—THEEGD  » WOUSTRY'S FIRST 56V LIHON BATTERY * EXPLORENORE

= +
= POVVER+ P CUTS UP TO 2 MILES ON A SINGLE CHARGE p——

=MOWER P COMPACT, FOLDABLE DESIGN WALKAERT
INTERNET Get SocialTimes delivered straight to your inbox
Can Social Media Help To Reduce | ==
Traffic Congestion? ””

B

We use social media to inform our friends about getting =3
engaged. We use social media to tell our followers about a
special event in town. Will we soon be using social media to warn other drivers of an accident?

According to the experts, this is the future. Having social media available in cars will allow for more
A deaffia inf 3 The £ia3 L 1 A dostad ta idzze Toad’s O

|s steering moblllty towards Nash eq. good?

— System now could potentially be doing
worse than Nash.

— Nash is obviously not as good as system
Ptlmum (hence price of anarchy, value
altruism etc.)

— How bad / good is displacing current
~ equilibrium towards Nash, which is what

W ) FOUNDATIONS OF RESILIENT
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Example for 3 miles in Pasadena

Let us assume overnight, 15% of users of 1210 start using Waze:
— Immediate massive reroute through Pasadena
— Travel time Iin Pasadena instantaneously goes up by 17%




Example for 3 miles in Pasadena

Let us assume overnight, 15% of users of 1210 start using Waze:
— Immediate massive reroute through Pasadena
— Travel time Iin Pasadena instantaneously goes up by 17%

22.5-

1210

travel time for 3 miles

Pasadena

City “before” >

% of app users e
ppl City “after”
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Example for 3 miles in Pasadena

Let us assume overnight, 15% of users of 1210 start using Waze:
— Immediate massive reroute through Pasadena
— Travel time Iin Pasadena instantaneously goes up by 17%
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travel time for 3 miles

~

AW

2 A
Ty ¥ \\
l210 ?g @ \\:\ a
1210 “after”
Pasadena

% of app users e ——
. . . . City “after”

10 15 20 25



Given a directed graph G = (N, A)

e OD pairs w € W C N? with paths P = ‘l::JWPW

@ Arc-path incidence matrix A = I(a € p)

NSl B = WA x - =
AN v e TR e
[ ;

Pat:hSJ»from"O‘tch\ |

DRCES
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N types of users k =1,--- , N:

@ Demand T\ = [T/ ]wew

o Path flows fi = [f],cp and arc flows x, = [x?].ca = Afi

o Total flows f = S°N_; fiy and x = [x%],ca = AF

: HTY S S INGEEE _
- y & - amd = 0 =3 2 3

popullation k: paths\.\fldws
— g L T

/ .

DRCES
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N types of users k=1,--- , N:

o Total flows f = 3N . fi and x = [x?].ca = Af
@ Arc costs cx(x) = [ (x7)]sca

o Path costs £(f) = [€F(f)]lpep = AT ci(x)

RN aEl - :
R N ST AC
Arc costs on each arc

{ / \\\./

P 4

Vi /
() = [F0NNacn
/v’ . = ]

s i ~ PRCES
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N types of users k=1,--- , N:

o Total flows f = 3N . fi and x = [x?].ca = Af
@ Arc costs cx(x) = [ (x7)]sca

o Path costs £(f) = [€F(f)]lpep = AT ci(x)

Paih costs alqmgch path
i |
A ! J
£(f) 7/[/@ﬁ(\f)],f ii__A/T/Ck(X) |
Y 1 e
L%
A i 4 DRCES




Given a directed graph G = (N, A)

e OD pairs w € W C N? with paths P= U P
wew

@ Arc-path incidence matrix A = I(a € p)

N types of users k =1,--- , N:
 Demand Ty = [T ]wew
o Path flows fi = [ff],cp and arc flows xx = [x?].ca = Afi
e Total flows f = Z,’Ll fi. and x= [xX)aca = AF
@ Arc costs cx(x) = [cf(x7)]aca

o Path costs 4k(f) = [££(F)lpep = AT ci(x)

oo e Lumuariune v s
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Traffic equilibrium (heterogeneous players)

CJ(f) == qrganEi(f) Vk=1,---,N (1)

Definition: Nash equilibrium
(f«)k=1,... nisaneq. flowif Vwe W, Vpe P¥, Vk=1,--- ,N:

>0 = £(f)=Crf) (2)

i
Variational inequality

Equivalently, for all feasible path flows (hy)x—1.... n

> () The =D () h (3)
k k
Arc flow formulation, for all feasible arc flows (xk)k=1,.-- ,n
> ) Ty =D () X (4)
k k

AS ) I N 1 \ Nl
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No potential exists because externality symmetry does not hold.2

Coupled convex potentials

b)) =3 [0 Tawyds = Ver(x) = [0 (6)

Definition: Equilibrium as a solution to a Nash Equilibrium game

{x} }k=1,... N is an equilibrium if and only if

X € argming cx dk(xk +x%4) Vk
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Coupled optimization programs

At each iteration every player, given the strategies of the others, updates his own strategy by
solving his convex optimization problem

i _ Y k 8
i G (X + x_k) (8)

Convergence is guaranteed when each ¢y is continuously differentiable and convex in x; for
fixed x_j, and the strategy sets Xj are closed and convex.?

4G. Scutari, D. P. Palomar, and J-S. Pang, “Convex Optimization, Game Theory, and Variational Inequality Theory", IEEE
Signal Processing Magazine, Vol. 35, May 2010.

Block coordinate descent for solving the heterogeneous game

l: forte€1,2,.--- do

2 forke 1,2, ..., Ndo

3 ARE argmi"ykEqubk(XiHrl +o X xR )
4. t+—t+1

i end for

6: end for

(=, FORCES
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Conclusions

Historical perspective

— The years 2007-2012 have brought information to mobility, giving
drivers the ability to achieve shortest travel time.

— The years 2010-2016 have seen the impact of these technologies on
mobillity patterns (changes in modality, routing, behavior)

— Companies (apps): are “learning”
— Users are “learning”
Scientific contributions in a “post travel time [ optimal control era”

— Under certain conditions, companies working non-cooperatively on
user routing might converge to a Nash equilibrium.

— Conditions of this convergence depends on the assumptions on the
model of these companies

— Practical implementations on “humans” reveals convergence to Nash
equilibria
Public policy perspective

— Today, in many regions of the world, traffic “[non}-equilibrium” is
probably worse than Nash equilibrium

— Apps probably contribute to steering system towards Nash

— WQ_iIe !}Ioash IS probably stIiII better than curregt situation globally, it ]
redistributes congestion, lea reased congestion in sub-urban
areas ( )(E@F{%‘?g
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