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Problem formulation 

Distributed learning dynamics in routing games 
– Each player routes population k according to distribution 

(corresponding to one OD pair) 
– At each iteration, the population k discovers their outcome 
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Sequential decision problem 

Distributed learning dynamics in routing games 
– Each player routes population k according to distribution 

(corresponding to one OD pair) 
 

– At each iteration, the population k discovers their outcome 
 

– The routing of population k at the next step is subsequently updated 
according to the following law 



Page ‹#› 

Coupled sequential decision problem 

Distributed learning dynamics in routing games 
– Each player routes population k according to distribution 

(corresponding to one OD pair) 
 

– At each iteration, the population k discovers their outcome 
 

– The routing of population k at the next step is subsequently updated 
according to the following law 



Page ‹#› 

Coupled sequential decision problem 

This also represents the process of apps (companies) routing users 
– Each gives shortest path (given previous information) 
– Previous information is mostly statistical (experience from previous 

day and some statistical forecast) 
 

All paths proposed are nearly equal: 
– Shortest path (55mins) 
– Third shortest path (58 mins) 
– Second shortest path (56 mins) 

 
Routing does in general not depend on 

– Forecast of the network loading 
using demand data (incomplete today) 

– Forecast of the network using potential 
impact of routing (i.e. routed users) on  
the network 

– Knowledge of what competitors of the app 
are doing (in the present case, Apple,  
INRIX, 511, etc.) 
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Coupled sequential decision problem 

Waze    Google        Apple    INRIX       Bing (Microsoft) 

30% 

8% 

62% 40% 

7% 

54% 60% 

3% 

37% 0% 

0% 

100% 12% 

9% 

79% 

All users of each company “equal” by standards of the company i.e. same 

(shortest) travel time according to the company, “essentially” Nash.  
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Distributed learning in games 

Non equilibrium situations 
– Equilibria: good description of system efficiency at steady-sate. 
– But systems rarely operate at equilibrium, hence 

– A prescriptive model: How do we drive system to eq. 
– A descriptive model: How would players behave in the game. 

 

Goals of the work 

– Define algorithm classes for which we can prove convergence 
– Robustness to stochastic perturbations. 
– Heterogeneous learning: different agents use different algorithms 
– Convergence rates. 

 

Related work 

– Discrete time: Hannan consistency (Hannan 1957), Hedge algorithm for 
two-player games (Freund 1999), regret based algorithms: (Hart 2001), 
online learning in games (Cesa 2006) 

– Continuous time: Potential games under dynamics with positive correlation 
condition (Sandholm 2009), replicator dynamics in evolutionary game 
theory (Weibull 1997), no-regret dynamics for two player games (Hart 2001) 
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Problem formulation 

O 

D 

population k 

Important question: what is      ?  
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Nash equilibrium 

BACK UP SLIDES 

O 

D 

population k 

No incentive to deviate 

from shortest path 
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Equilibrium of a game: tangential condition 

BACK UP SLIDES 
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Equilibrium of a game: tangential condition 

BACK UP SLIDES 
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Approach 1: regret analysis 

Interpretation of the regret and the convergence 
– Cumulative regret models the comparison of playing over time the best 

strategy possible (without changing it), and comparing it to the strategy 
obtained by the game.  

– In the case of sublinear regret, the game converges on average 
towards a Nash equilibrium  

– Good for optimization purposes 
– Bad for operational purposes (no guarantee on what the outcome of the 

game is) 
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Application to the routing game 
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Convergence on average 
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Convergence on average 
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Approach 2: stochastic approximation 

Idea:  
– View the learning dynamics as a discretization of an ODE 
– Study the convergence of the ODE 
– Relate the convergence of the discrete algorithm to the convergence of 

the ODE 
 
 
 
 
 
 
 

 

Definitions:  
–       Discretization (in time) 
–       Distribution of flow along one arc  
–       Set of arcs for population k 

 
Weibull, Evolutionary Game Theory, 1997 
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AREP: approximate replicator dynamics 

Idea:  
– View the learning dynamics as a discretization of an ODE 
– Study the convergence of the ODE 
– Relate the convergence of the discrete algorithm to the convergence of 

the ODE 
 
 
 
 
 
 
 

 

Definitions:  
–       Discretization (in time) 
–       Distribution of flow along one arc  
–       Set of arcs for population k 

 
 

 
 

 

Benaim, Dynamics of stochastic approximation algorithms, 1999 
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AREP: approximate replicator dynamics 

Idea:  
– View the learning dynamics as a discretization of an ODE 
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Page ‹#› 

AREP: approximate replicator dynamics: 
illustration 

Blue: discretized AREP 

Red: continuous trajectory of replicator dynamics 
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Approach 3: convex optimization 

Idea:  
– View the learning dynamics as a distributed algorithm to minimize the 

function f.  
– Allows us to analyze convergence rates. 

 

Here: 
– Class of distributed optimization methods: stochastic mirror descent 
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Approach 3: convex optimization 
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Convergence 



Page ‹#› 

Convergence 



Page ‹#› 

Summary 

Distributed learning dynamics in routing games 
– Each player routes population k according to distribution 

(corresponding to one OD pair) 
– At each iteration, the population k discovers their outcome 
– The routing of population k at the next step is subsequently updated 

according to the following law 



Page ‹#› 

Application to the routing game 
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Routing game with strongly convex potential 
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Routing game with strongly convex potential 
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Practical game implementation: field experiment 
Idea of the game: study non-cooperative behavior of routing applications 
“managers” 

– As if Google was “playing against” Apple, INRIX etc. 
– Study evolution of distribution over successive iterations  
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Idea of the game: study non-cooperative behavior of routing applications 
“managers” 

– As if Google was “playing against” Apple, INRIX etc. 
– Study evolution of distribution over successive iterations  

Each “manager” has knowledge 

of the network 

Practical game implementation: field experiment 
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Idea of the game: study non-cooperative behavior of routing applications 
“managers” 

– As if Google was “playing against” Apple, INRIX etc. 
– Study evolution of distribution over successive iterations  

Through an interface he/she can choose 

the distribution of his/her flow on the network 

(for the game: on one OD pair) 

Practical game implementation: field experiment 
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Idea of the game: study non-cooperative behavior of routing applications 
“managers” 

– As if Google was “playing against” Apple, INRIX etc. 
– Study evolution of distribution over successive iterations  

Depending on the setting: each user can see a subset (or all) of: 

- His/her costs at each iteration 

- Cumulative costs (performance) over the games 

- History of plays (i.e. how he/she allocated the flows previously) 

Practical game implementation: field experiment 
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Game process 
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Learning how players learn 
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Interface for one player 
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Cost of each player (normalized by eq. cost) 
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Cost of each player (normalized by eq. cost) 
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Value of potential function 
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Average of KL divergence  
Average KL divergence between 

– Predicted distributions 
– Actual distributions  

As a function of the prediction horizon h 
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Back to Coupled sequential decision problem 
Waze    Google        Apple    INRIX       Bing (Microsoft) 

30% 

8% 

62% 40% 

7% 

54% 60% 

3% 

37% 0% 

0% 

100% 12% 

9% 

79% 

All users of each company “equal” by standards of the company i.e. same 

(shortest) travel time according to the company, “essentially” Nash.  
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The “LA problem” (soon in a city near you) 
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The one (?) million dollar question 

John Nash 

Is steering mobility towards Nash eq. good? 
– System now could potentially be doing 

worse than Nash. 
– Nash is obviously not as good as system 

optimum (hence price of anarchy, value 
of altruism etc.) 

– How bad / good is displacing current 
equilibrium towards Nash, which is what 
apps are doing? 
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Example for 3 miles in Pasadena 

John Nash 

Let us assume overnight, 15% of users of I210 start using Waze:  
– Immediate massive reroute through Pasadena 
– Travel time in Pasadena instantaneously goes up by 17% 

3 
miles 
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Graph formulation 

O 

D 

Paths from O to D 
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Graph formulation 

O 

D 

population k: paths flows 
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Graph formulation 

O 

D 

Arc costs on each arc 
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Graph formulation 

O 

D 

Path costs along each path 
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Graph formulation 
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Traffic equilibrium (heterogeneous players) 



Page ‹#› 

Coupled optimization programs 
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Coupled optimization programs 
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Conclusions 
Historical perspective 

– The years 2007-2012 have brought information to mobility, giving 
drivers the ability to achieve shortest travel time. 

– The years 2010-2016 have seen the impact of these technologies on 
mobility patterns (changes in modality, routing, behavior) 

– Companies (apps): are “learning” 
– Users are “learning” 

Scientific contributions in a “post travel time / optimal control era” 
– Under certain conditions, companies working non-cooperatively on 

user routing might converge to a Nash equilibrium. 
– Conditions of this convergence depends on the assumptions on the 

model of these companies 
– Practical implementations on “humans” reveals convergence to Nash 

equilibria 

Public policy perspective 
– Today, in many regions of the world, traffic “[non]-equilibrium” is 

probably worse than Nash equilibrium 
– Apps probably contribute to steering system towards Nash 
– While Nash is probably still better than current situation globally, it 

redistributes congestion, leading to increased congestion in sub-urban 
areas 

 


