

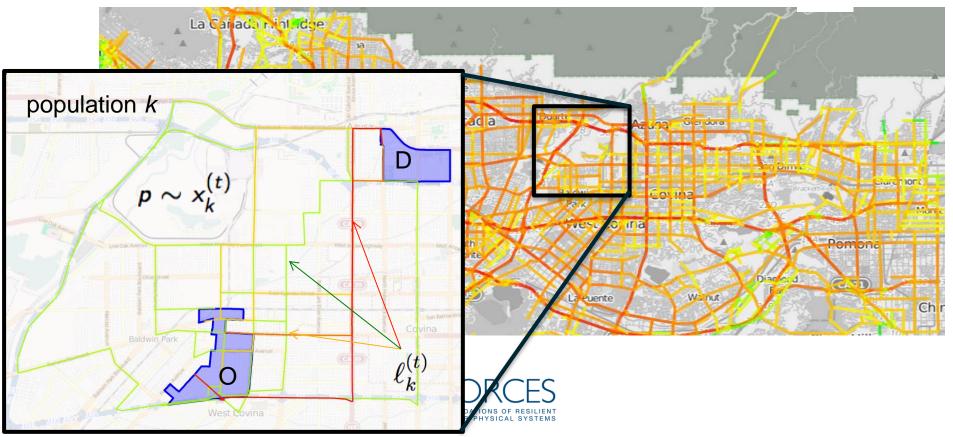
Distributed learning dynamics convergence in routing games

Alex Bayen, EECS / CEE with Walid Krichene and Jerome Thai

Problem formulation

Distributed learning dynamics in routing games

- Each player routes population k according to distribution $p \sim x_k^{(t)}$ (corresponding to one OD pair)
- At each iteration, the population k discovers their outcome $\ell_k^{(t)}$



Problem formulation

Distributed learning dynamics in routing games

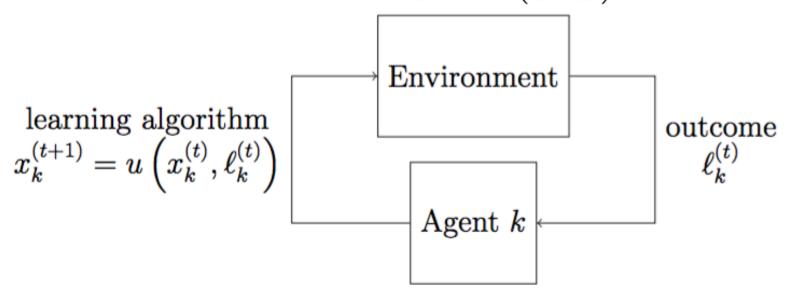
- Each player routes population k according to distribution $p \sim x_k^{(t)}$ (corresponding to one OD pair)
- At each iteration, the population k discovers their outcome $\ell_k^{(t)}$
- The routing of population k at the next step is subsequently updated according to the following law $x_k^{(t+1)} = u_k \left(x_k^{(t)}, \ell_k^{(t)} \right)$

Online Learning Model 1: for $t \in \mathbb{N}$ do 2: Play $p \sim x_k^{(t)}$ 3: Discover $\ell_k^{(t)}$ 4: Update $x_k^{(t+1)} = u_k \left(x_k^{(t)}, \ell_k^{(t)} \right)$ 5: end for

Sequential decision problem

Distributed learning dynamics in routing games

- Each player routes population k according to distribution $p \sim x_k^{(t)}$ (corresponding to one OD pair)
- At each iteration, the population k discovers their outcome $\ell_k^{(t)}$
- The routing of population k at the next step is subsequently updated according to the following law $x_k^{(t+1)} = u_k \left(x_k^{(t)}, \ell_k^{(t)} \right)$



Coupled sequential decision problem

Distributed learning dynamics in routing games

- Each player routes population k according to distribution $p \sim x_k^{(t)}$ (corresponding to one OD pair)
- At each iteration, the population k discovers their outcome $\ell_k^{(t)}$
- The routing of population k at the next step is subsequently updated according to the following law $x_k^{(t+1)} = u_k \left(x_k^{(t)}, \ell_k^{(t)}\right)$

Environment Other agents

learning algorithm $x_k^{(t+1)} = u\left(x_k^{(t)}, \ell_k^{(t)}\right)$

 $uitcome \ell_k(x_1^{(t)},\ldots,x_K^{(t)})$

Agent k

Coupled sequential decision problem

This also represents the process of apps (companies) routing users

- Each gives shortest path (given previous information)
- Previous information is mostly statistical (experience from previous day and some statistical forecast)

from Your location

🗄 3 hr 8

// 11 hr 🖧 3 hr 22

Pleasa

avward

3 min

Mountain

Union C

55 min

to Stanford, CA

Oakland

San Mateo

1 min

slower

55 min (37 mi) 🔊

Fastest route, the usual traffic

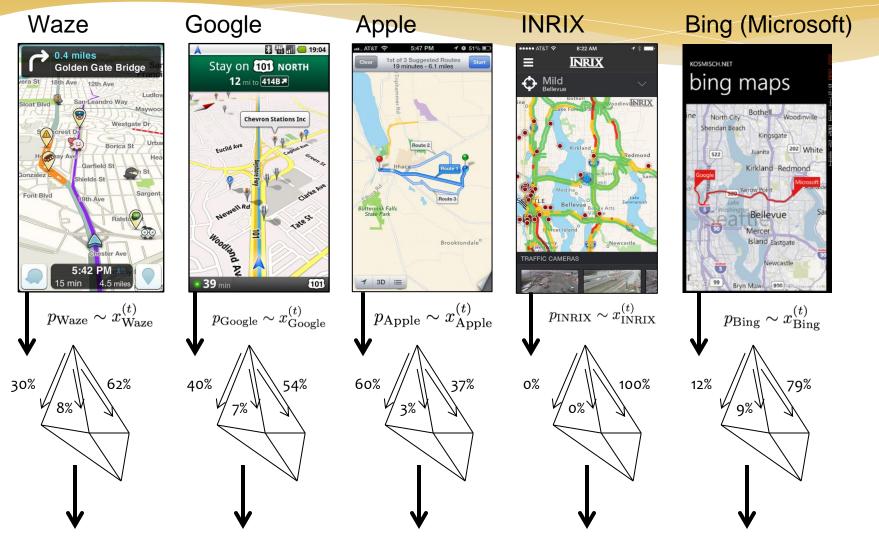
All paths proposed are nearly equal:

- Shortest path (55mins) _
- Third shortest path (58 mins)
- Second shortest path (56 mins)

Routing does in general not depend on

- Forecast of the network loading using demand data (incomplete today)
- Forecast of the network using potential impact of routing (i.e. routed users) on the network
- Knowledge of what competitors of the app are doing (in the present case, Apple, INRIX, 511, etc.)

Coupled sequential decision problem



All users of each company "equal by standards of the company i.e. same Page #> (shortest) travel time according to the company, "essentially" Nash.

Distributed learning in games

Non equilibrium situations

- Equilibria: good description of system efficiency at steady-sate.
- But systems rarely operate at equilibrium, hence
 - A prescriptive model: How do we drive system to eq.
 - A descriptive model: How would players behave in the game.

Goals of the work

- Define algorithm classes for which we can prove convergence
- Robustness to stochastic perturbations.
- Heterogeneous learning: different agents use different algorithms
- Convergence rates.

Related work

- Discrete time: Hannan consistency (Hannan 1957), Hedge algorithm for two-player games (Freund 1999), regret based algorithms: (Hart 2001), online learning in games (Cesa 2006)
- Continuous time: Potential games under dynamics with positive correlation condition (Sandholm 2009), replicator dynamics in evolutionary game theory (Weibull 1997), no-regret dynamics for two player games (Hart 2001)

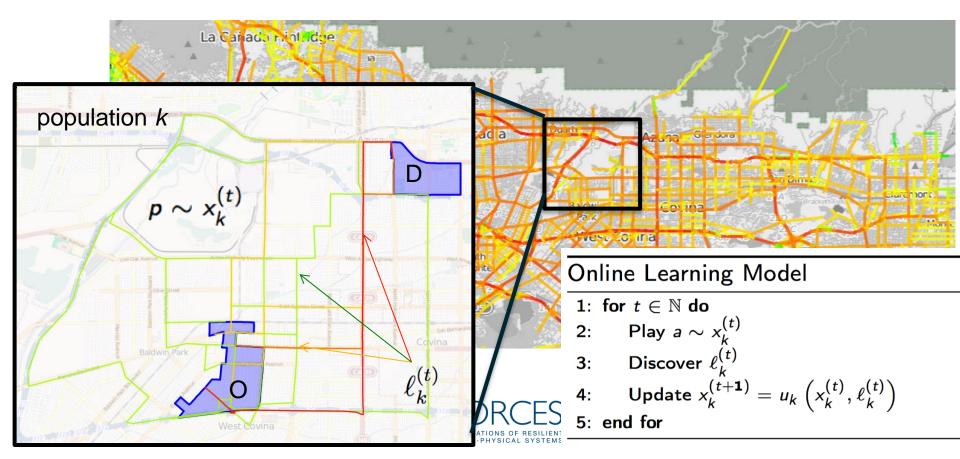
Problem formulation

Main problem

Define class of algorithms $\ensuremath{\mathcal{C}}$ such that

$$u_k \in \mathcal{C} \ \forall k \Rightarrow x^{(t)} \to \mathcal{X}^*$$

Important question: what is \mathcal{X}^*



Nash equilibrium

Write

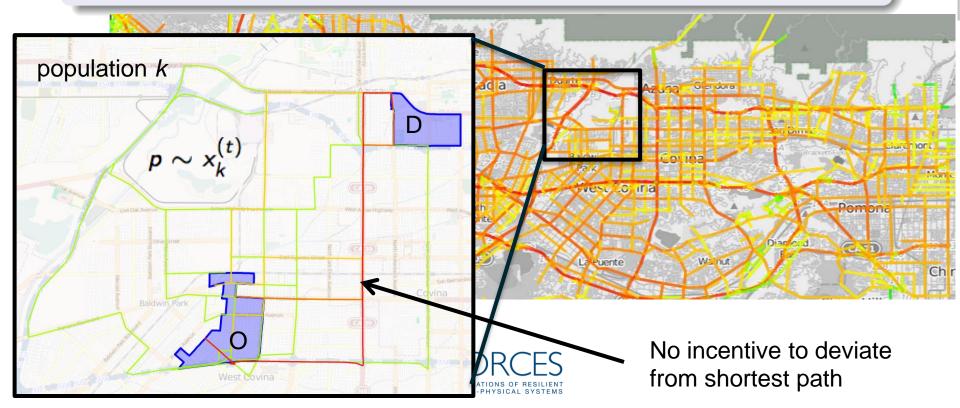
$$x = (x_1, \ldots, x_K) \in \Delta^{\mathcal{A}_1} \times \cdots \times \Delta^{\mathcal{A}_K}$$

$$\ell(x) = (\ell_1(x), \ldots, \ell_K(x))$$

Nash equilibria \mathcal{X}^{\star}

 x^* is a Nash equilibrium if for all k, paths in the support of x_k^* have minimal loss.

 $\forall x, \ \langle \ell(x^{\star}), x - x^{\star} \rangle \geq 0$



Equilibrium of a game: tangential condition

Write

 $x = (x_1, \ldots, x_K) \in \Delta^{\mathcal{A}_1} \times \cdots \times \Delta^{\mathcal{A}_K}$ $\ell(x) = (\ell_1(x), \ldots, \ell_{\kappa}(x))$

Nash equilibria \mathcal{X}^{\star}

 x^* is a Nash equilibrium if for all k, paths in the support of x_k^* have minimal loss.

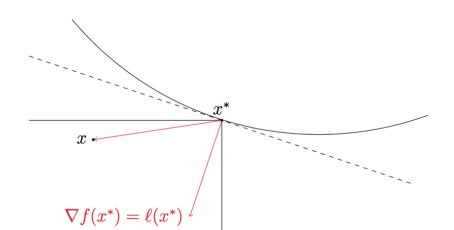
 $\forall x, \langle \ell(x^{\star}), x - x^{\star} \rangle \geq 0$

Rosenthal potential

 $\exists f \text{ convex such that } \nabla f(x) = \ell(x).$

Nash condition \Leftrightarrow $\forall x, \ \langle \ell(x^{\star}), x - x^{\star} \rangle \geq 0 \qquad \forall x, \ \langle \nabla f(x^{\star}), x - x^{\star} \rangle \geq 0$

first order optimality



Equilibrium of a game: tangential condition

Write

 $x = (x_1, \ldots, x_K) \in \Delta^{\mathcal{A}_1} \times \cdots \times \Delta^{\mathcal{A}_K}$ $\ell(x) = (\ell_1(x), \ldots, \ell_{\kappa}(x))$

Nash equilibria \mathcal{X}^{\star}

 x^* is a Nash equilibrium if for all k, paths in the support of x_k^* have minimal loss.

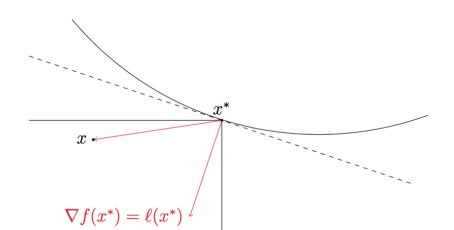
 $\forall x, \langle \ell(x^{\star}), x - x^{\star} \rangle \geq 0$

Rosenthal potential

 $\exists f \text{ convex such that } \nabla f(x) = \ell(x).$

Nash condition \Leftrightarrow $\forall x, \ \langle \ell(x^{\star}), x - x^{\star} \rangle \geq 0 \qquad \forall x, \ \langle \nabla f(x^{\star}), x - x^{\star} \rangle \geq 0$

first order optimality



Approach 1: regret analysis

Interpretation of the regret and the convergence

- Cumulative regret models the comparison of playing over time the best strategy possible (without changing it), and comparing it to the strategy obtained by the game.
- In the case of sublinear regret, the game converges on average towards a Nash equilibrium
- Good for optimization purposes
- Bad for operational purposes (no guarantee on what the outcome of the game is)

Cumulative regret

$$R_k^{(t)} = \sup_{x_k \in \Delta^{\mathcal{A}_k}} \sum_{\tau \leq t} \left\langle x_k^{(t)} - x_k, \ell_k(x^{(t)}) \right\rangle$$

"Online" optimality condition. Sublinear if $\limsup_t \frac{R_k^{(t)}}{t} \leq 0$.

Convergence of averages

$$\left[orall k, R_k^{(t)} \text{ is sublinear}
ight] \Rightarrow ar{x}^{(t)} o \mathcal{X}^{\star}$$

$$\bar{x}^{(t)} = \frac{1}{t} \sum_{\tau=1}^{t} x^{(\tau)}$$
. Proof

Application to the routing game

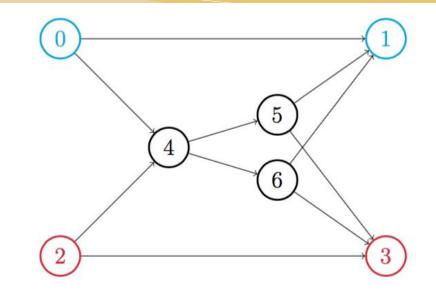
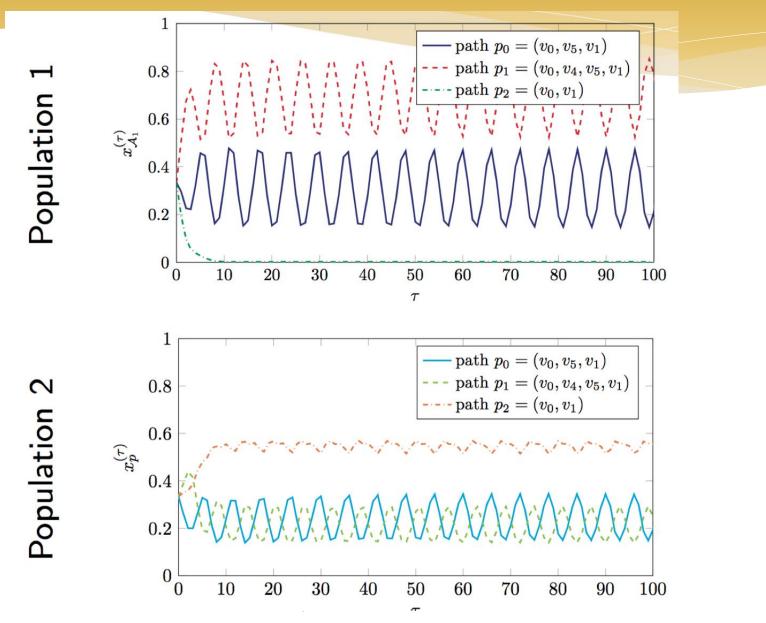


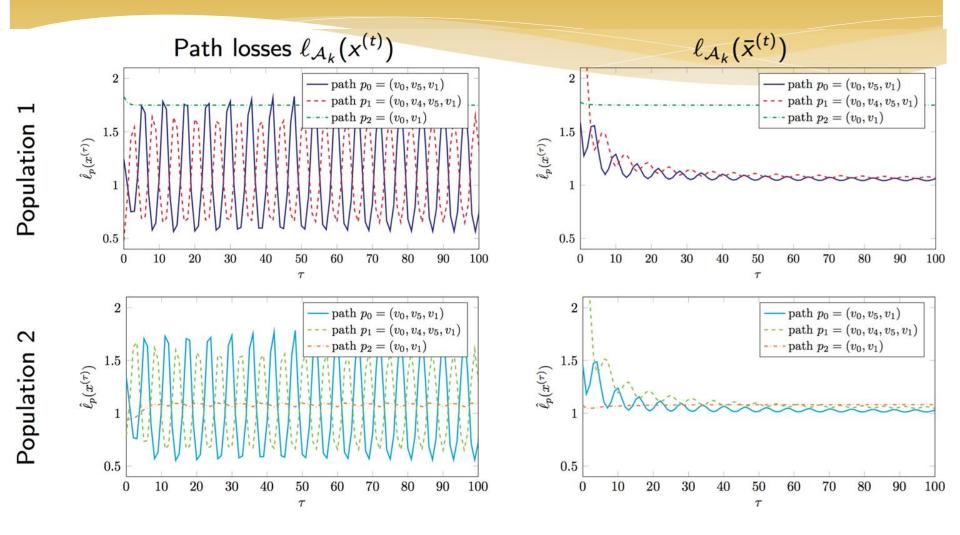
Figure: Example with strongly convex potential.

- Population 1: Hedge with $\eta_t^1 = t^{-1}$
- Population 2: Hedge with $\eta_t^2 = t^{-1}$

Convergence on average



Convergence on average



Approach 2: stochastic approximation

Idea:

- View the learning dynamics as a discretization of an ODE
- Study the convergence of the ODE
- Relate the convergence of the discrete algorithm to the convergence of the ODE

Definitions:

- η_t Discretization (in time)
- Xa Distribution of flow along one arc
- $-\mathcal{A}_k$ Set of arcs for population k

Weibull, Evolutionary Game Theory, 1955 FORCES

Idea:

- View the learning dynamics as a discretization of an ODE
- Study the convergence of the ODE
- Relate the convergence of the discrete algorithm to the convergence of the ODE

Discretization of the continuous-time replicator dynamics

$$\frac{x_a^{(t+1)} - x_a^{(t)}}{\eta_t} = x_a^{(t)} \left(\left\langle \ell(x^{(t)}), x^{(t)} \right\rangle - \ell_a(x^{(t)}) \right) + U_a^{(t+1)}$$

Benaim, Dynamics of stochastic approximation apprinting 1999

Idea:

- View the learning dynamics as a discretization of an ODE
- Study the convergence of the ODE
- Relate the convergence of the discrete algorithm to the convergence of the ODE

$$rac{dx_a}{dt} = x_a \left(\langle \ell(x), x \rangle - \ell_a(x)
ight)$$

Discretization of the continuous-time replicator dynamics

$$\frac{x_a^{(t+1)} - x_a^{(t)}}{\eta_t} = x_a^{(t)} \left(\left\langle \ell(x^{(t)}), x^{(t)} \right\rangle - \ell_a(x^{(t)}) \right) + U_a^{(t+1)}$$

• η_t discretization time steps.

•
$$(U^{(t)})_{t\geq 1}$$
 perturbations that satisfy for all $T > 0$,
 $\lim_{\tau_1\to\infty} \max_{\tau_2:\sum_{t=\tau_1}^{\tau_2} \eta_t < T} \left\| \sum_{t=\tau_1}^{\tau_2} \eta_t U^{(t+1)} \right\| = 0$

(a sufficient condition is that $\exists q \geq 2$: $\sup_{\tau} \mathbb{E} \| U^{(\tau)} \|^q < \infty$ and $\sum_{\tau} \eta_{\tau}^{\mathbf{1} + \frac{q}{2}} < \infty$)

Idea:

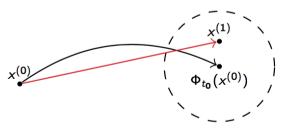
- View the learning dynamics as a discretization of an ODE
- Study the convergence of the ODE
- Relate the convergence of the discrete algorithm to the convergence of the ODE, but no convergence rates

Theorem [13]

In convex potential games, under AREP updates, if $\eta_t \downarrow 0$ and $\sum \eta_t = \infty$, then

 $x^{(t)}
ightarrow \mathcal{X}^{\star}$ a.s.

• Affine interpolation of $x^{(t)}$ is an asymptotic pseudo trajectory of ODE.



• Use *f* as a Lyapunov function.

▶ proof details

Idea:

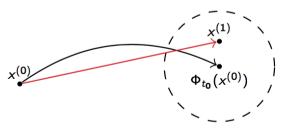
- View the learning dynamics as a discretization of an ODE
- Study the convergence of the ODE
- Relate the convergence of the discrete algorithm to the convergence of the ODE, but no convergence rates

Theorem [13]

In convex potential games, under AREP updates, if $\eta_t \downarrow 0$ and $\sum \eta_t = \infty$, then

 $x^{(t)}
ightarrow \mathcal{X}^{\star}$ a.s.

• Affine interpolation of $x^{(t)}$ is an asymptotic pseudo trajectory of ODE.



• Use *f* as a Lyapunov function.

▶ proof details

Idea:

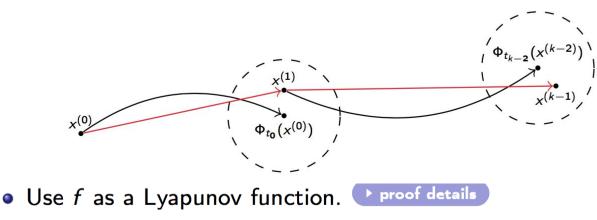
- View the learning dynamics as a discretization of an ODE
- Study the convergence of the ODE
- Relate the convergence of the discrete algorithm to the convergence of the ODE, but no convergence rates

Theorem [13]

In convex potential games, under AREP updates, if $\eta_t \downarrow 0$ and $\sum \eta_t = \infty$, then

$$x^{(t)} o \mathcal{X}^{\star}$$
 a.s.

• Affine interpolation of $x^{(t)}$ is an asymptotic pseudo trajectory of ODE.



Idea:

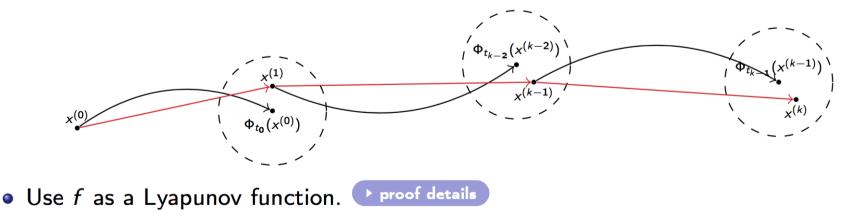
- View the learning dynamics as a discretization of an ODE
- Study the convergence of the ODE
- Relate the convergence of the discrete algorithm to the convergence of the ODE, but no convergence rates

Theorem [13]

In convex potential games, under AREP updates, if $\eta_t \downarrow 0$ and $\sum \eta_t = \infty$, then

$$x^{(t)} o \mathcal{X}^{\star}$$
 a.s.

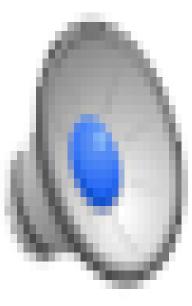
• Affine interpolation of $x^{(t)}$ is an asymptotic pseudo trajectory of ODE.



AREP: approximate replicator dynamics: illustration

Blue: discretized AREP

Red: continuous trajectory of replicator dynamics



Idea:

- View the learning dynamics as a distributed algorithm to minimize the function *f*.
- Allows us to analyze convergence rates.

Here:

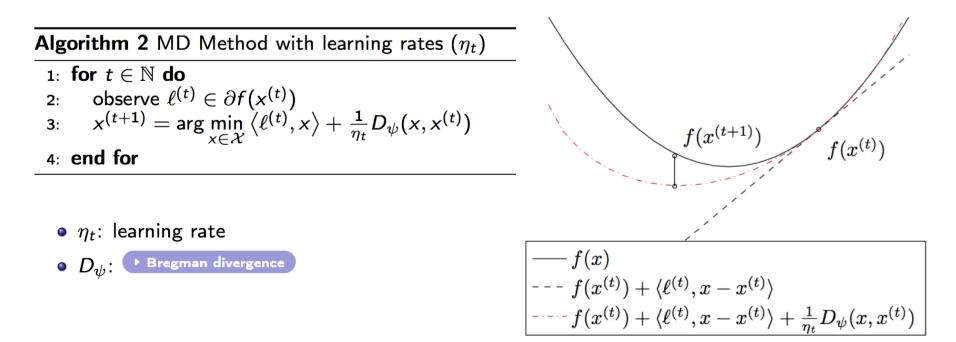
- Class of distributed optimization methods: stochastic mirror descent

minimize	f(x)	convex function			
subject to	$x \in \mathcal{X} \subset \mathbb{R}^d$	convex, compact set			

Bregman Divergence

$$D_{\psi}(x,y) = \psi(x) - \psi(y) - \langle
abla \psi(y), x - y
angle$$

minimizef(x)convex functionsubject to $x \in \mathcal{X} \subset \mathbb{R}^d$ convex, compact set



Bregman Divergence

$$D_\psi(x,y) = \psi(x) - \psi(y) - \langle
abla \psi(y), x - y
angle$$

minimizef(x)convex functionsubject to $x \in \mathcal{X} \subset \mathbb{R}^d$ convex, compact set

Algorithm 2 MD Method with learning rates
$$(\eta_t)$$

1: for $t \in \mathbb{N}$ do
2: observe $\ell_k^{(t)} \in \partial_k f(x^{(t)})$
3: $x_k^{(t+1)} = \arg\min_{x \in \mathcal{X}_k} \left\langle \ell_k^{(t)}, x \right\rangle + \frac{1}{\eta_t^k} D_{\psi_k}(x, x_k^{(t)})$
4: end for

• η_t : learning rate

• D_{ψ} : • Bregman divergence

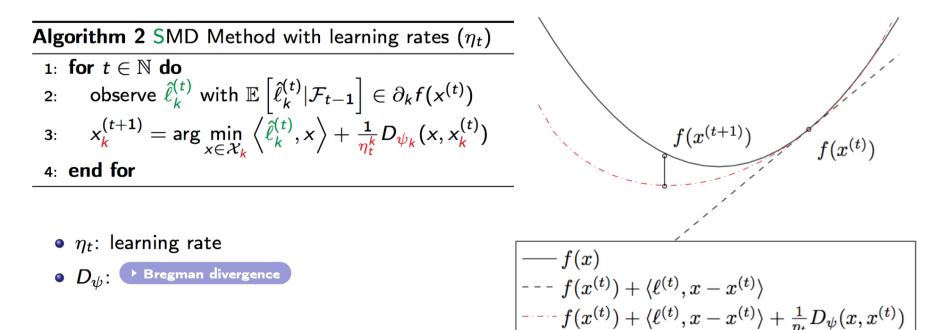
 $f(x^{(t+1)})$ $f(x^{(t)})$

$$egin{aligned} & --- f(x) \ & --- f(x^{(t)}) + \langle \ell^{(t)}, x - x^{(t)}
angle \ & ---- f(x^{(t)}) + \langle \ell^{(t)}, x - x^{(t)}
angle + rac{1}{\eta_t} D_\psi(x, x^{(t)}) \end{aligned}$$

Bregman Divergence

$$\mathcal{D}_\psi(\mathsf{x},\mathsf{y}) = \psi(\mathsf{x}) - \psi(\mathsf{y}) - \langle
abla \psi(\mathsf{y}), \mathsf{x} - \mathsf{y}
angle$$

minimizef(x)convex functionsubject to $x \in \mathcal{X} \subset \mathbb{R}^d$ convex, compact set



Bregman Divergence

$$\mathcal{D}_\psi(\mathsf{x},\mathsf{y}) = \psi(\mathsf{x}) - \psi(\mathsf{y}) - \langle
abla \psi(\mathsf{y}), \mathsf{x} - \mathsf{y}
angle$$

Convergence

 $d_{ au} = D_{\psi}(\mathcal{X}^{\star}, x^{(au)}).$

Main ingredient

$$\mathbb{E}\left[d_{\tau+1}|\mathcal{F}_{\tau-1}\right] \leq d_{\tau} - \eta_{\tau}(f(x^{(\tau)}) - f^{\star}) + \frac{\eta_{\tau}^2}{2\mu} \mathbb{E}\left[\|\hat{\ell}^{(\tau)}\|_*^2 |\mathcal{F}_{\tau-1}\right]$$

From here,

• Can show a.s. convergence $x^{(t)} \to \mathcal{X}^*$ if $\sum \eta_t = \infty$ and $\sum \eta_t^2 < \infty$ d_{τ} is an almost super martingale [19], [5]

Deterministic version: If $d_{\tau+1} \leq d_{\tau} - a_{\tau} + b_{\tau}$, and $\sum b_{\tau} < \infty$, then (d_{τ}) converges.

Optimizing Methods in Statistics, 1971

[5]Léon Bottou. Online algorithms and stochastic approximations.

1998

^[19]H. Robbins and D. Siegmund. A convergence theorem for non negative almost supermartingales and some applications.

Convergence

To show convergence E [f(x^(t))] → f^{*}, generalize the technique of Shamir et al. [22].

Convergence of Distributed Stochastic Mirror Descent

For $\eta_t^k = \frac{\theta_k}{t^{\alpha_k}}, \ \alpha_k \in (0, 1),$ $\mathbb{E}\left[f(x^{(t)})\right] - f^* = \mathcal{O}\left(\sum_k \frac{\log t}{t^{\min(\alpha_k, 1 - \alpha_k)}}\right)$

Non-smooth, non-strongly convex.

More details

In *ICML*, pages 71–79, 2013

^[22]Ohad Shamir and Tong Zhang. Stochastic gradient descent for non-smooth optimization: Convergence results and optimal averaging schemes.

^[12] Syrine Krichene, Walid Krichene, Roy Dong, and Alexandre Bayen. Convergence of heterogeneous distributed learning in stochastic routing games.

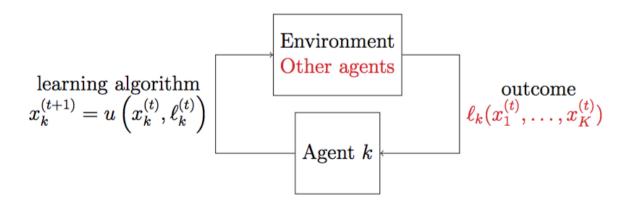
In 53rd Allerton Conference on Communication, Control and Computing, 2015

Summary

Distributed learning dynamics in routing games

- Each player routes population k according to distribution (corresponding to one OD pair)
- At each iteration, the population *k* discovers their outcome
- The routing of population k at the next step is subsequently updated according to the following law $x_{k}^{(t+1)} = u_{k} \left(x_{k}^{(t)}, \ell_{k}^{(t)} \right)$

 $oldsymbol{
ho}\sim x_k^{(t)} \ \ell_k^{(t)}$



- Regret analysis: convergence of $\bar{x}^{(t)}$
- Stochastic approximation: almost sure convergence of $x^{(t)}$
- Stochastic convex optimization: almost sure convergence, 𝔼 [f(x^(t))] → f^{*}, 𝔅 [D_ψ(x^{*}, x^(t))] → 0, convergence rates.

Application to the routing game

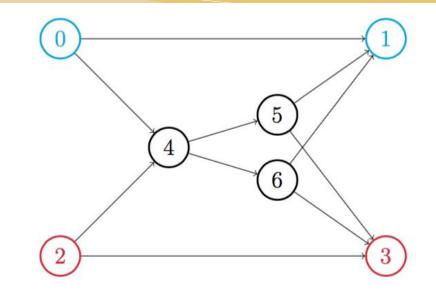
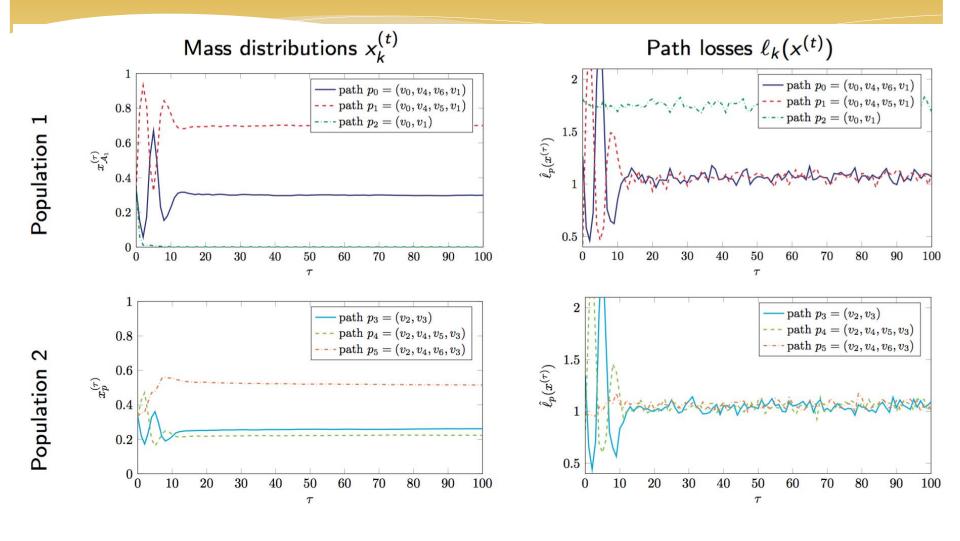


Figure: Example with strongly convex potential.

- Population 1: Hedge with $\eta_t^1 = t^{-1}$
- Population 2: Hedge with $\eta_t^2 = t^{-1}$

Routing game with strongly convex potential



Routing game with strongly convex potential

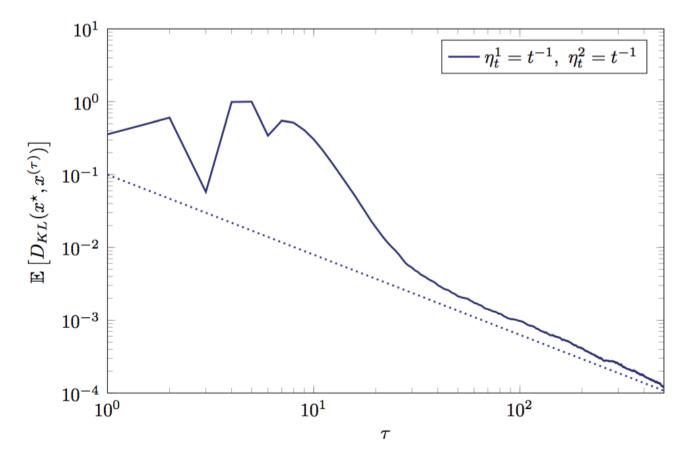


Figure: Distance to equilibrium. For $\eta_t^k = \frac{\theta_k}{\ell_f t^{\alpha_k}}, \ \alpha_k \in (0, 1], \mathbb{E}\left[D_{\psi}(x^*, x^{(t)})\right] = O(\sum_k t^{-\alpha_k})$

Practical game implementation: field experiment

Idea of the game: study non-cooperative behavior of routing applications "managers"

- As if Google was "playing against" Apple, INRIX etc.

6.000

4.000

2.000

0.000

0.700

0.600

0.500

Study evolution of distribution over successive iterations

Routing game				Time remaining: 11 Logged as:	u1 - Logout			
	Input	Input						
	Path	Previous cost	Cumulative cost	Weight	Current Flows	Previous Flows		
	Path 0	0.911	17.921	0.24	0.407	0.407		
	Path 1	0.915	20.056	0.28	0.098	0.098		
	Path 2	0.922	20.356	0.25	0.114	0.114		
\times \times \times	Path 3	0.927	20.198	0.33	0.102	0.102		
	Path 4	0.916	19.656	0.36	0.134	0.134		
	Path 5	0.910	19.696		0.146	0.146		
	Show e	dge costs Clear e	edge costs	1				
	Show ex	Clear	age costs					
Previous Cost	Cumulative Cost			Previous Flows				
1.300	22.000 = 20.000 - 18.000 -		1 and	0.450				
1.100	16.000 - 14.000 -		The second	0.350 - 0.300 -				
0.900	12.000 - 10.000 - 8.000 -		a de la dela dela dela dela dela dela de	0.250 - 0.200 -				

0.150

0.100

0.050

15

18

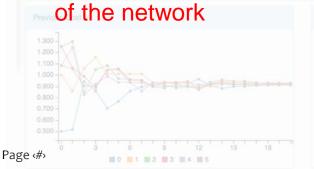
Practical game implementation: field experiment

Idea of the game: study non-cooperative behavior of routing applications "managers"

- As if Google was "playing against" Apple, INRIX etc.
- Study evolution of distribution over successive iterations

Routing game				u1 - Logout		
	Input					
	Path Previou	s cost Cumulative cost	Weight	Current Flows	Previous Flows	
	Path 0 0.911	17.921	0.24	0.407	0.407	
	Path 1 0.915	20.056	0.28			
		20.356	0.25	0.114	0.114	
	Path 3 0.927	20.198	0.33	0.102	0.102	
		19.656	0.36	0.134	0.134	
	Path 5 0.910	19.696	•	0.146	0.146	
U	Show edge costs					

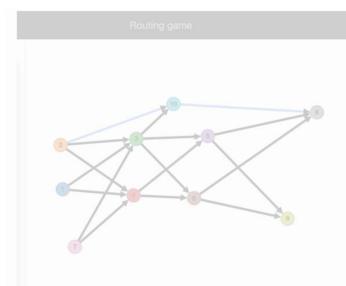
Each "manager" has knowledge



Practical game implementation: field experiment

Idea of the game: study non-cooperative behavior of routing applications "managers"

- As if Google was "playing against" Apple, INRIX etc.
- Study evolution of distribution over successive iterations

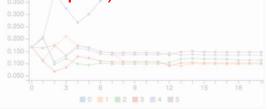


Input					
Path	Previous cost	Cumulative cost	Weight 1	Current Flows	Previous Flows
Path 0	0.911	17.921	0.24	0.407	0.407
Path 1	0.915	20.056	0.28	0.098	0.098
Path 2	0.922	20.356	0.25	0.114	0.114
Path 3	0.927	20.198	0.33	0.102	0.102
Path 4	0.916	19.656	0.36	0.134	0.134
Path 5	0.910	19.696		0.146	0.146

Show edge costs Clear edge costs

Previous Cost

Through an interface he/she can choose the distribution of his/her flow on the network (for the game: on one OD pair)



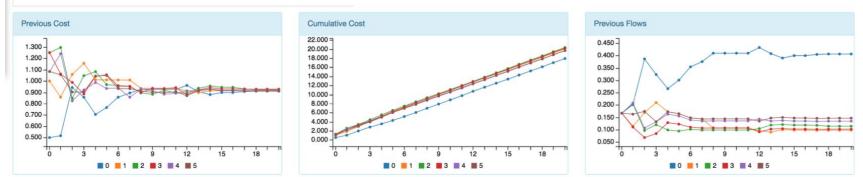
Practical game implementation: field experiment

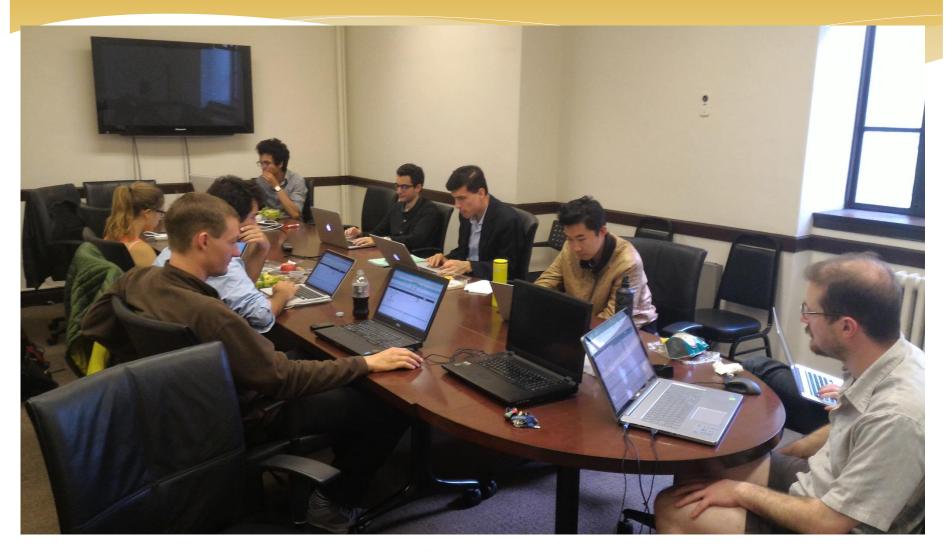
Idea of the game: study non-cooperative behavior of routing applications "managers"

- As if Google was "playing against" Apple, INRIX etc.
- Study evolution of distribution over successive iterations

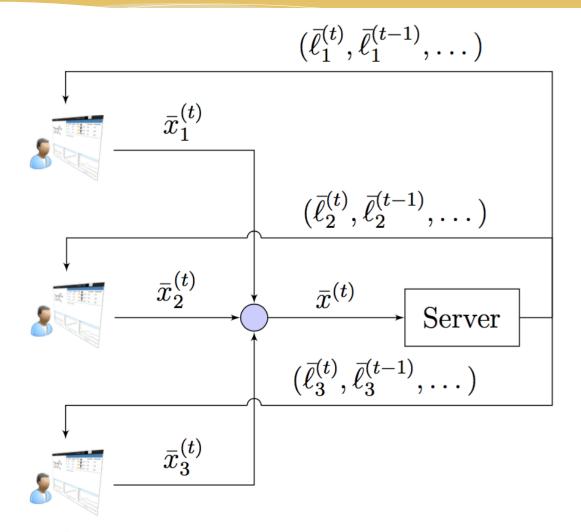
					ut - Logout	
	Path	Previous cost	Cumulative cost	Weight	Current Flows	Previous Flows
(10)		0.911	17.921	024	0.407	0.407
10		0.915	20.056	0.28		
			20.356	0.25	0.114	0.114
		0.927	20.198	0.33	0.102	0.102
Depending on the setting: each u	ser	can se	e a subs	set (or all) of:	0.134	0.134
His/her costs at each iteration			19.696		0.146	0.146

- Cumulative costs (performance) over the games
- History of plays (i.e. how he/she allocated the flows previously)





Game process



Learning how players learn

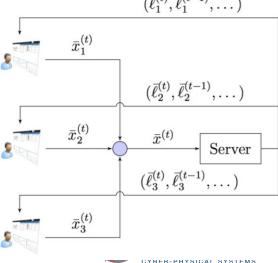
- We observe a sequence of player decisions $(\bar{x}^{(t)})$ and losses $(\bar{\ell}^{(t)})$.
- Can we fit a model of player dynamics?

Mirror descent model

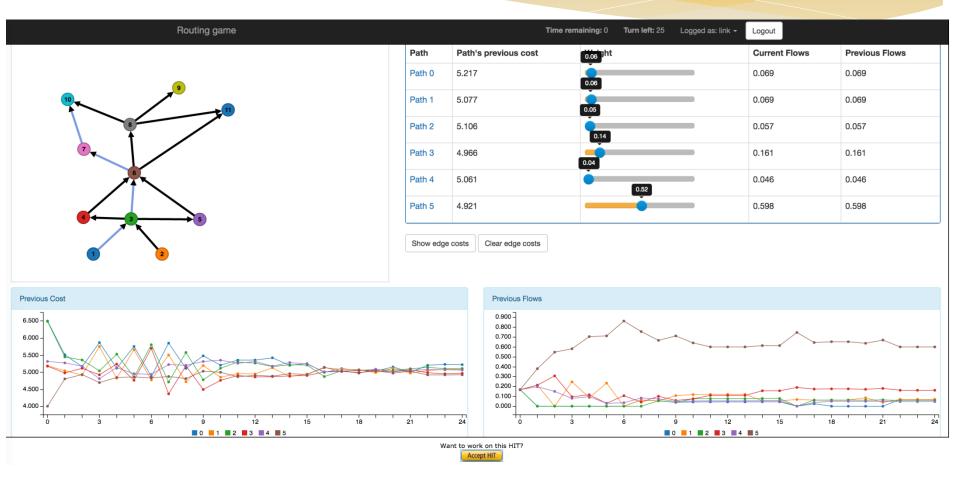
Estimate the learning rate in the mirror descent model

$$x^{(t+1)}(\eta) = rgmin_{x\in\Delta^{\mathcal{A}_k}} \left\langle ar{\ell}^{(t)}, x
ight
angle + rac{1}{\eta} D_{\mathcal{KL}}(x,ar{x}^{(t)})$$

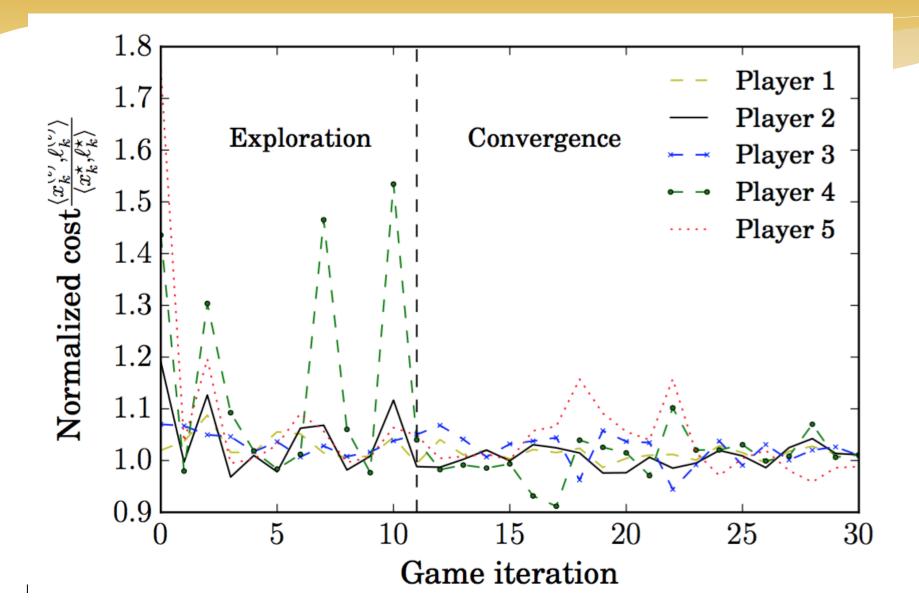
Then $d(\eta) = D_{KL}(\bar{x}^{(t+1)}, x^{(t+1)}(\eta))$ is a convex function. Can minimize it to estimate $\eta_k^{(t)}$.



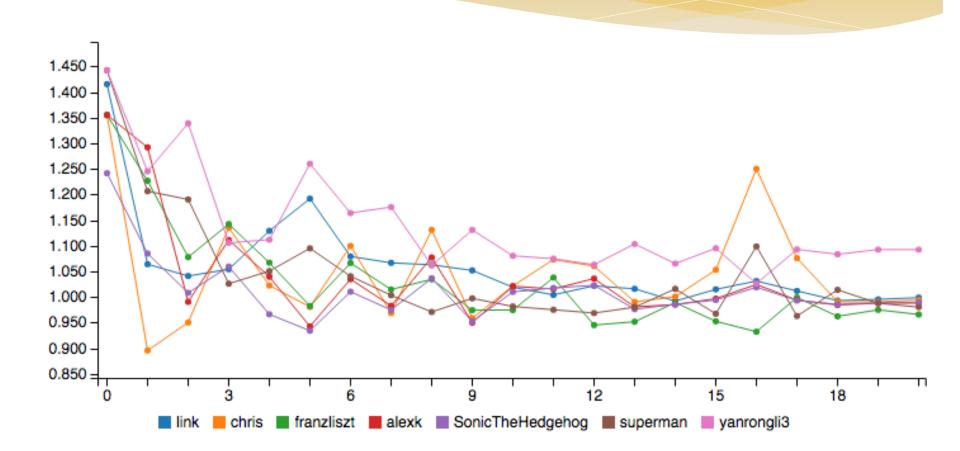
Interface for one player



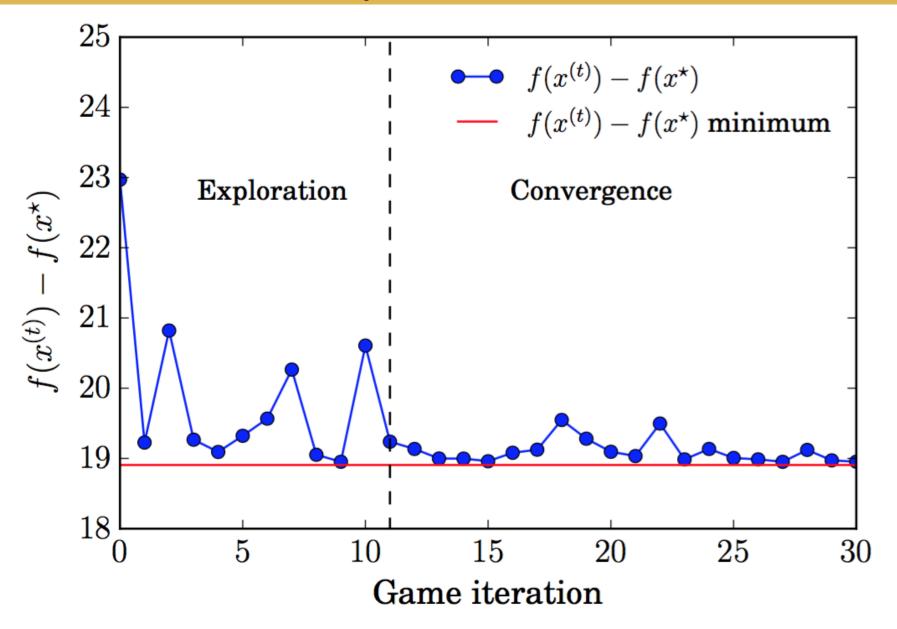
Cost of each player (normalized by eq. cost)



Cost of each player (normalized by eq. cost)



Value of potential function

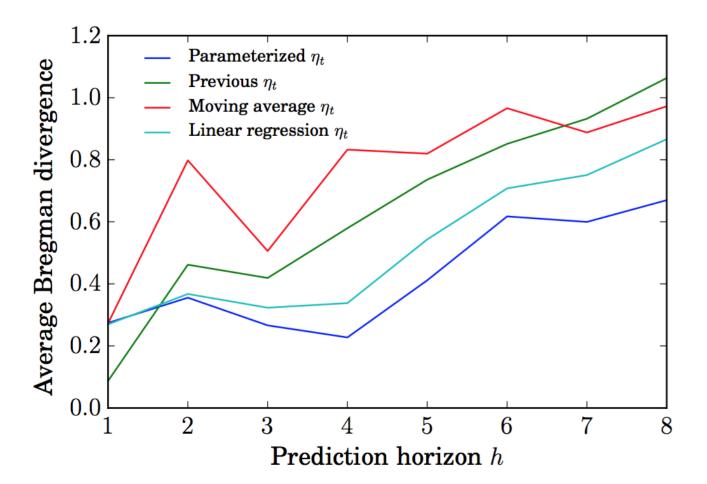


Average of KL divergence

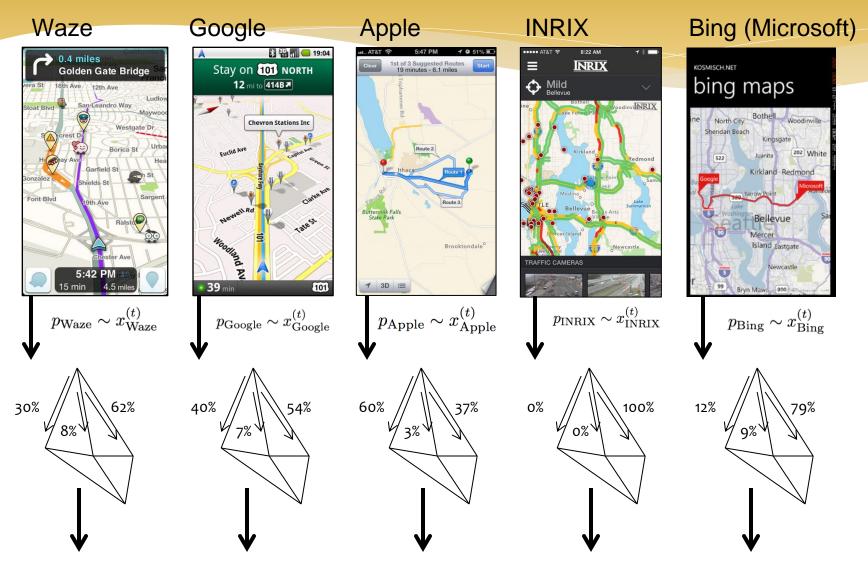
Average KL divergence between

- Predicted distributions
- Actual distributions

As a function of the prediction horizon h



Back to Coupled sequential decision problem



All users of each company "equal" by standards of the company i.e. same Page #> (shortest) travel time according to the company, "essentially" Nash.

MEDIA GET HELP TALK TO US PERFORMANCE ABOUT

ENGLISH

Press Releases

BLOG

Eric Garcetti #Iamayor

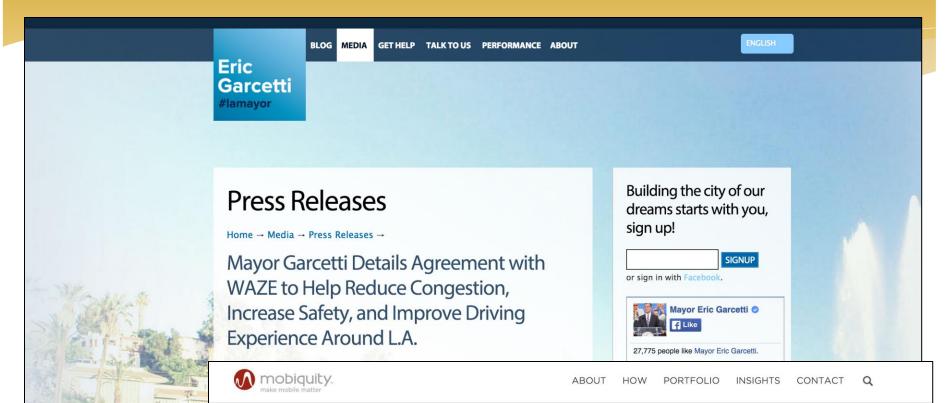
Home \rightarrow Media \rightarrow Press Releases \rightarrow

Mayor Garcetti Details Agreement with WAZE to Help Reduce Congestion, Increase Safety, and Improve Driving Experience Around L.A.

Posted by Mayor Eric Garcetti on April 21, 2015 · Flag

App will feature first-ever hit-and-run notifications and AMBER Alerts to aid public safety

Mayor Garcetti today announced the details of a data-sharing agreement between the City of Los Angeles and Waze, an agreement he previewed in his State of the City Address last week. The Waze app is used by more than 1.3 Building the city of our dreams starts with you, sign up!



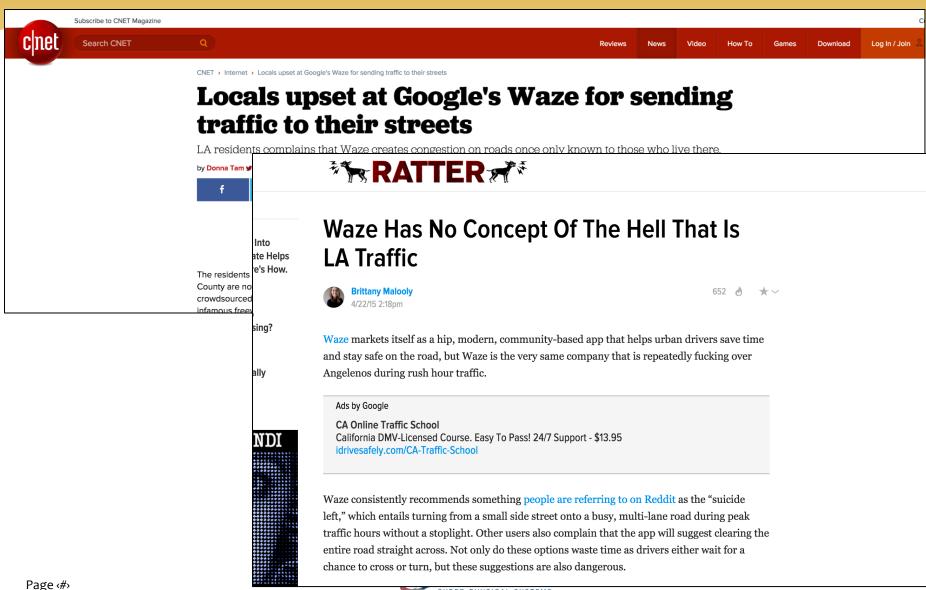
Los Angeles and Waze Team Up to Combat Traffic Congestion

INSIGHTS | MOBILE DOSE

When Americans think of traffic they think of Los Angeles, even if they've never visited. So it makes sense that the LA mayor's office has announced that the city is partnering with traffic app Waze? to help combat the congestion. The deal allows data to be shared between the two parties—the city will alert Waze about hazards, construction and crashes while the app will give the city a wealth of data to analyze how traffic moves. Ideally this will allow for changes that will improve commutes.



	Subscribe to CNET Magazine								c
c net	Search CNET	Q	F	views News	Video	How To	Games	Download	Log In / Join 💄
		CNET > Internet > Locals upset at Google's Waze for sending traffic	to their streets						
		Locals upset at G	Google's Waze fo	r sen	din	g			
		traffic to their st				0			
		LA residents complains that Waze create	s congestion on roads once only known	o those who	live ther	e.			
		by Donna Tam 🞔 @DonnaYTam / December 14, 2014 11:25 AM F	PST						
		f 🎐 in 8º							
		(2) rackspace.	Tailor your cloud to yo Not the other way around.		D •				
		The residents of neighborhoods in Los Angeles County are not happy with Waze, Google's crowdsourced mapping app. It's sending the area's infamous freeway traffic onto their once quiet			ocals upset	at Google's W ic to their stre			



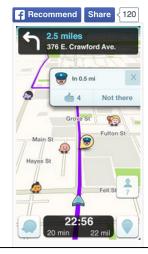
CYBER-PHYSICAL SYSTEMS

f	🖸 🎐 A					ABOUT	STAFF	CONTACT	ADVERTISE	FAQ	PRIVACY POLICY	TERMS OF SERVI	ICE
	my	news .com	- began of	EICO 15%	. need l	say r	nore	?	ZIP	St	art Quote	Þ	
	CRIME	GOVERNMENT	BUSINESS	EDUCATION	SPORTS	HOLLY	rwood	LIFE	WEATHER	a (DC Search	Q	
	LATEST N	EWS La Mirada ma	n accused in mu	urder of his wife i	n 1992 arres	ted in Ant	tigua						C Stea

Home » Government » This Article

'Cut-through' traffic caused by Waze app must stop, L.A. councilman says

POSTED BY JOHN SCHREIBER ON APRIL 28, 2015 IN GOVERNMENT | 10,658 VIEWS | 2 RESPONSES



A Los Angeles city deal with traffic app Waze may be great, but some local communities are being inundated with "cut-through" traffic that must stop, a Los Angeles City Councilman said Tuesday.

Paul Krekorian introduced a motion to help local neighborhoods, saying Waze should send drivers away from residential streets and onto major roadways as part of the company's data-sharing agreement with the city.

Mayor Eric Garcetti announced last week that the city is sharing road closure data with Waze to improve its service, and in return the city is getting live undates about traffic patterns CYBER-PHYSICAL SYSTEMS

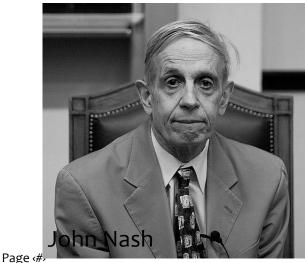
GET MYNEWSLA.COM'S FREE NEWSLETTERS

We'll send you the latest headlines every morning at 7 and every weekday afternoon at 5. Our newsletters are **free** and your email address is secure.

Email Address

The one (?) million dollar question

SocialTimes	Facebook Twitter	Internet Infographics Gaming Q	
Advertisen	nent		
THE EGO INDUSTRY'S ARST 56V LI-ION BATTERY	EXPLORE MORE	500 SP	
■ POWER+ ► CUTS UP TO 2 MILES ON A SINGLE CHARGE ■ MOWER ► COMPACT, FOLDABLE DESIGN	EGO TECHNOLOGY	0	
INTERNET		Get SocialTimes delivered straight to your inbox	
Con Social Madia Halp To Da	duco	Email address Submit	
Can Social Media Help To Re	uuce	Send an anonymous tip	
Traffic Congestion?		Describe your tip	
0 f Share V Tweet A More			
SHARES SHARES		<i>h</i>	
By keithbutler on Jan. 7, 2011 - 4:00 PM 🛛 🔎 8 Comments		Send	
We use social media to inform our friends about getting			
engaged. We use social media to tell our followers about a		Advertisement	
special event in town. Will we soon be using social media to warn other drivers	s of an accident?	MASTER'S DEGREES	
According to the experts, this is the future. Having social media available in ca			
advanced troffic information. The future has already started to become reality	· Ford's Sume on wall on		



Is steering mobility towards Nash eq. good?

- System now could potentially be doing worse than Nash.
- Nash is obviously not as good as system optimum (hence price of anarchy, value of altruism etc.)
- How bad / good is displacing current equilibrium towards Nash, which is what
 apps are doing?

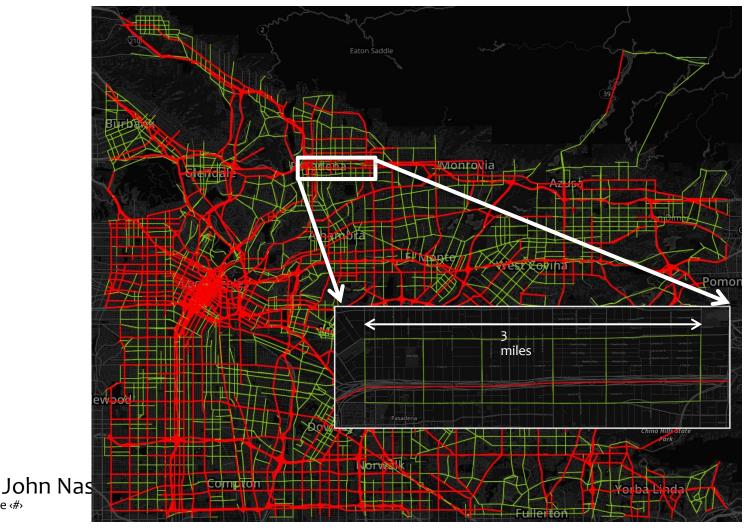
Example for 3 miles in Pasadena

Let us assume overnight, 15% of users of I210 start using Waze:

Immediate massive reroute through Pasadena

Page «#»

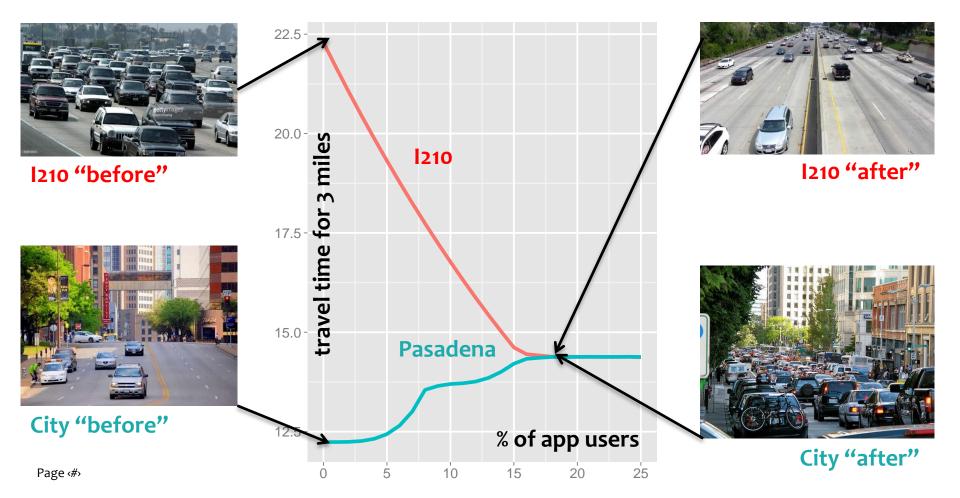
Travel time in Pasadena instantaneously goes up by 17%



Example for 3 miles in Pasadena

Let us assume overnight, 15% of users of I210 start using Waze:

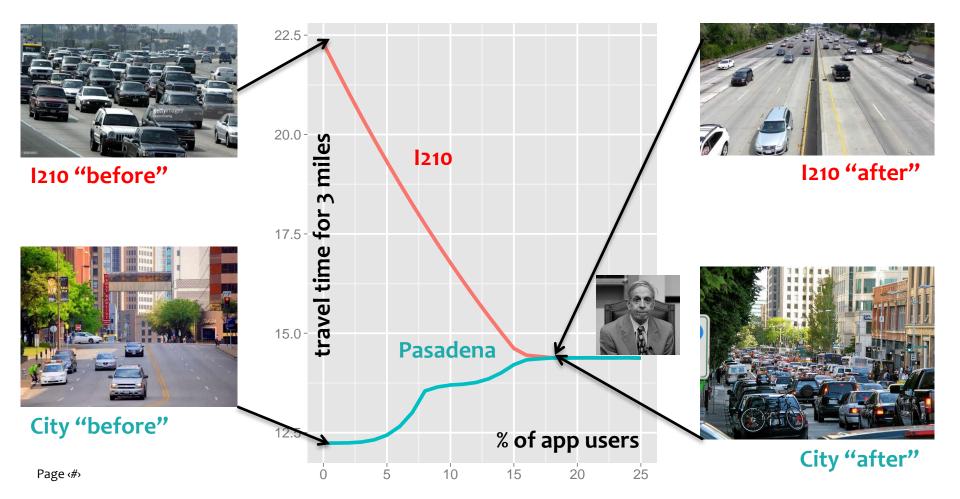
- Immediate massive reroute through Pasadena
- Travel time in Pasadena instantaneously goes up by 17%



Example for 3 miles in Pasadena

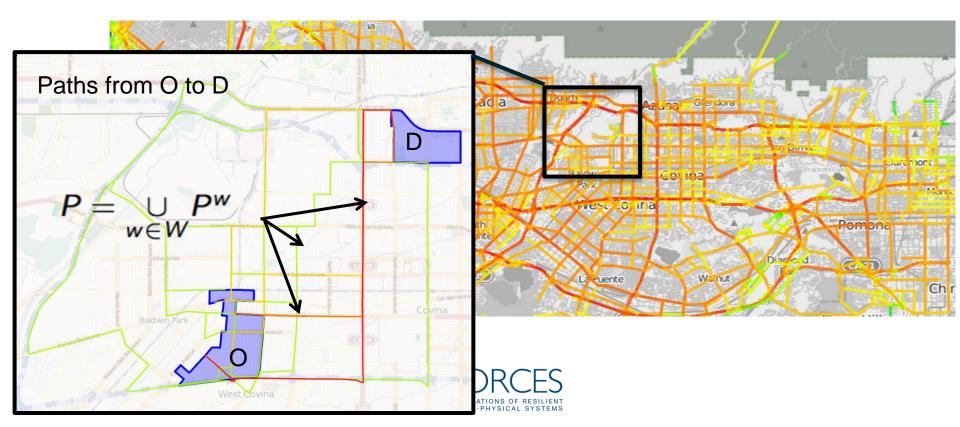
Let us assume overnight, 15% of users of I210 start using Waze:

- Immediate massive reroute through Pasadena
- Travel time in Pasadena instantaneously goes up by 17%



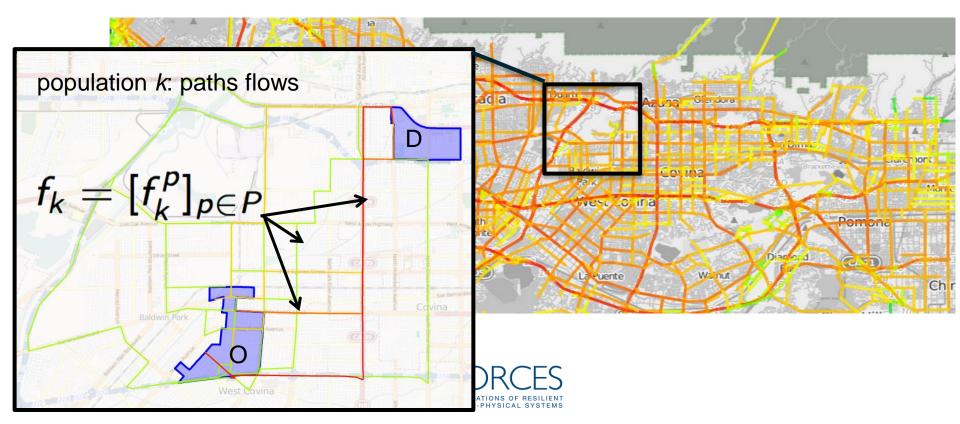
Given a directed graph G = (N, A)

- OD pairs $w \in W \subset N^2$ with paths $P = \underset{w \in W}{\cup} P^w$
- Arc-path incidence matrix $\Delta = I(a \in p)$



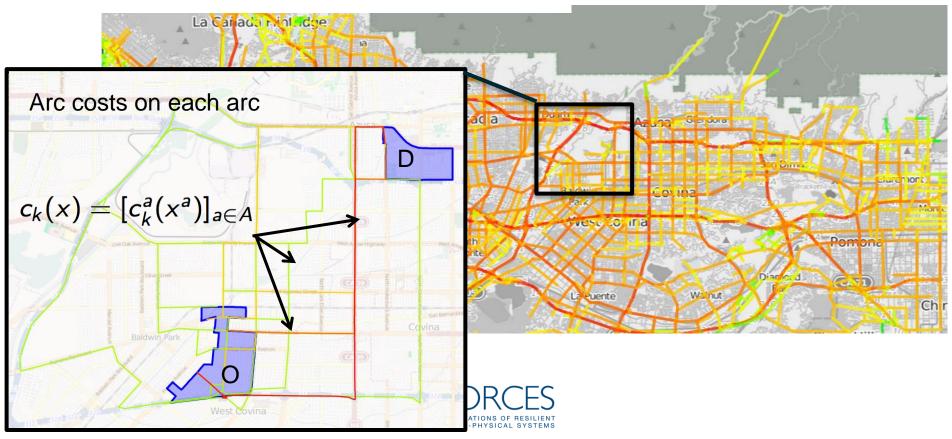
N types of users $k = 1, \cdots, N$:

- Demand $T_k = [T_k^w]_{w \in W}$
- Path flows $f_k = [f_k^p]_{p \in P}$ and arc flows $x_k = [x_k^a]_{a \in A} = \Delta f_k$
- Total flows $f = \sum_{k=1}^N f_k$ and $x = [x^a]_{a \in A} = \Delta f$



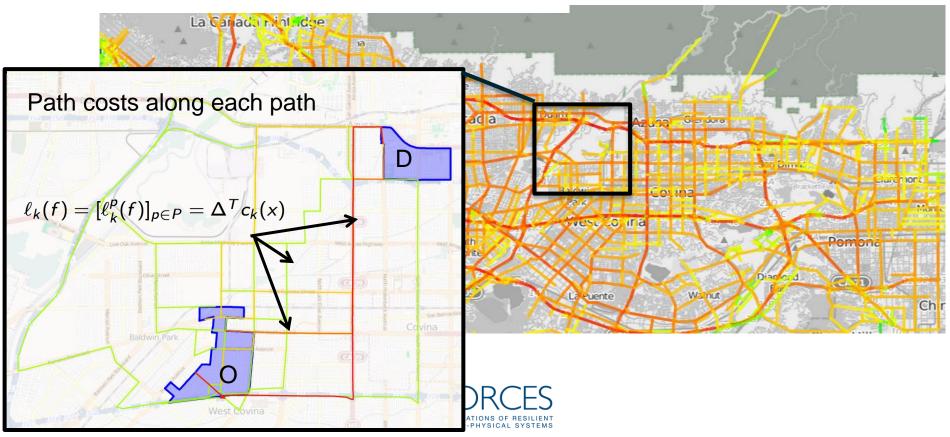
N types of users $k = 1, \cdots, N$:

- Total flows $f = \sum_{k=1}^N f_k$ and $x = [x^a]_{a \in A} = \Delta f$
- Arc costs $c_k(x) = [c_k^a(x^a)]_{a \in A}$
- Path costs $\ell_k(f) = [\ell_k^p(f)]_{p \in P} = \Delta^T c_k(x)$



N types of users $k = 1, \cdots, N$:

- Total flows $f = \sum_{k=1}^N f_k$ and $x = [x^a]_{a \in A} = \Delta f$
- Arc costs $c_k(x) = [c_k^a(x^a)]_{a \in A}$
- Path costs $\ell_k(f) = [\ell_k^p(f)]_{p \in P} = \Delta^T c_k(x)$



Given a directed graph G = (N, A)

• OD pairs $w \in W \subset N^2$ with paths $P = \bigcup_{w \in W} P^w$

Arc-path incidence matrix Δ = I(a ∈ p)

N types of users $k = 1, \cdots, N$:

• Demand $T_k = [T_k^w]_{w \in W}$

• Path flows $f_k = [f_k^p]_{p \in P}$ and arc flows $x_k = [x_k^a]_{a \in A} = \Delta f_k$

• Total flows
$$f = \sum_{k=1}^N f_k$$
 and $x = [x^a]_{a \in A} = \Delta f$

• Arc costs
$$c_k(x) = [c_k^a(x^a)]_{a \in A}$$

• Path costs
$$\ell_k(f) = [\ell_k^p(f)]_{p \in P} = \Delta^T c_k(x)$$

Traffic equilibrium (heterogeneous players)

$$C_k^w(f) := \min_{q \in P^w} \ell_k^q(f) \quad \forall k = 1, \cdots, N$$
(1)

Definition: Nash equilibrium

 $(f_k)_{k=1,\cdots,N}$ is an eq. flow if $\forall w \in W, \ \forall p \in P^w, \ \forall k = 1,\cdots,N$:

$$f_k^p > 0 \implies \ell_k^p(f) = C_k^w(f)$$
 (2)

Variational inequality

Equivalently, for all feasible path flows $(h_k)_{k=1,\cdots,N}$

$$\sum_{k} \ell_k(f)^T h_k \ge \sum_{k} \ell_k^p(f)^T f_k$$
(3)

Arc flow formulation, for all feasible arc flows $(x_k)_{k=1,\dots,N}$

$$\sum_{k} c_k(x)^T y_k \ge \sum_{k} c_k(x)^T x_k \tag{4}$$

Coupled optimization programs

No potential exists because externality symmetry does not hold.²

Coupled convex potentials

$$\phi_k(x) = \sum_a \int_0^{x_a} c_k^a(u) du \implies \nabla \phi_k(x) = [c_k^a(x^a)]_a$$
(6)

Definition: Equilibrium as a solution to a Nash Equilibrium game

 $\{x_k^{\star}\}_{k=1,\cdots,N}$ is an equilibrium if and only if

$$x_k^{\star} \in \operatorname{argmin}_{x_k \in X_k} \phi_k(x_k + x_{-k}^{\star}) \quad \forall \ k \tag{7}$$

Coupled optimization programs

Convergence of Gauss-Seidel best response-based algorithm to the equilibrium

At each iteration every player, given the strategies of the others, updates his own strategy by solving his convex optimization problem

$$\min_{x_k \in X_k} \phi_k(x_k + x_{-k}) \quad \forall k \tag{8}$$

Convergence is guaranteed when each ϕ_k is continuously differentiable and convex in x_k for fixed x_{-k} , and the strategy sets X_k are closed and convex.^a

^aG. Scutari, D. P. Palomar, and J-S. Pang, "Convex Optimization, Game Theory, and Variational Inequality Theory", *IEEE Signal Processing Magazine*, Vol. 35, May 2010.

Block coordinate descent for solving the heterogeneous game

1: for
$$t \in 1, 2, \cdots$$
 do
2: for $k \in 1, 2, \cdots, N$ do
3: $x_k^{t+1} \leftarrow \operatorname{argmin}_{y_k \in C_k} \phi_k(x_1^{t+1} + \cdots + x_{k-1}^{t+1} + y_k + x_{k+1}^t + \cdots + x_N^t)$
4: $t \leftarrow t+1$
5: end for
6: end for

_ _ _

Conclusions

Historical perspective

- The years 2007-2012 have brought information to mobility, giving drivers the ability to achieve shortest travel time.
- The years 2010-2016 have seen the impact of these technologies on mobility patterns (changes in modality, routing, behavior)
 - Companies (apps): are "learning"
 - Users are "learning"

Scientific contributions in a "post travel time / optimal control era"

- Under certain conditions, companies working non-cooperatively on user routing might converge to a Nash equilibrium.
- Conditions of this convergence depends on the assumptions on the model of these companies
- Practical implementations on "humans" reveals convergence to Nash equilibria

Public policy perspective

- Today, in many regions of the world, traffic "[non]-equilibrium" is probably worse than Nash equilibrium
- Apps probably contribute to steering system towards Nash
- While Nash is probably still better than current situation globally, it redistributes congestion, leading to increased congestion in sub-urban areas