

Distributed Visual-Inertial Cooperative Localization [Award #: 1924897]

Guoquan (Paul) Huang University of Delaware (UD)

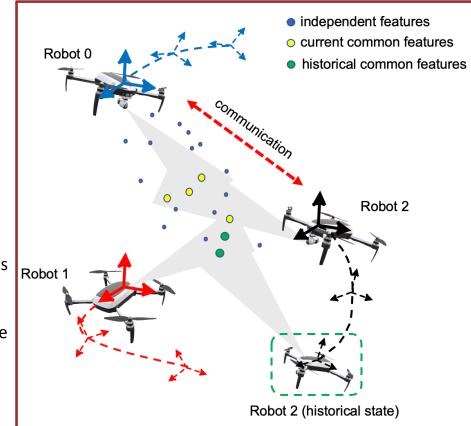
NSF NRI & FRR PI Meeting, April 19-22, 2022

Introduction

- Multi-robot systems can **collaborate** to accomplish missions more efficiently and robustly.
- Visual-Inertial Cooperative Localization (VI-CL) leveraging additional geometric constraints to improve localization accuracy of the whole group.
- Distributed estimation is more scalable, robust, and efficient as compared to centralized estimators.
- Contributions: An efficient distributed state estimator for multi-robot VI-CL w/o requiring simultaneous viewing of common features:
 - Consistent estimation based on Covariance Intersection (CI).
 - Efficient common SLAM and VIO feature updates.
 - Historical loop-closure matching across time and robots to reduce localization drift.

Algorithm

- Problem setup:
 - Multiple robots exploring an environment:
 - Robots, when in communication range, send feature info., current and historical states.
 - Each robot tracks a short "sliding window" of clones.
 - Other robot's states are related through common feature observations.
 - Different features can be categorized:
 - *Independent*: Only one robot sees these features.
 - *Current common*: Seen from multiple robots that only constrain their current "sliding window".
 - *Historical common*: The feature seen by one robot currently was seen by another robot before, but not currently.
- Proposed approach:
 - Use common feature constraints to improve the localization accuracy and limit long-term navigation drift.



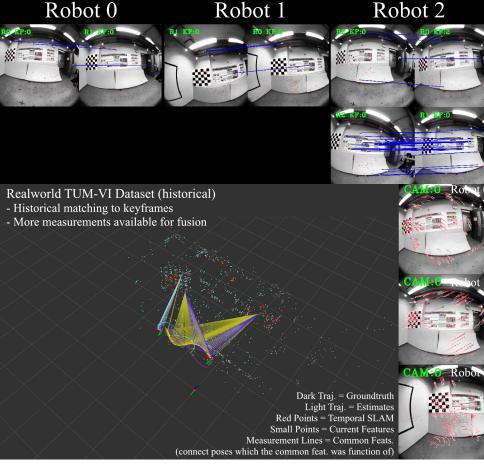
Results: Distributed VI-CL [IROS 21]

- VI-CL Estimator built on top of **OpenVINS.**
- Common features improved trajectory **accuracy** over independent robot state estimation.
- The accuracy of **Distributed** estimators is competitive with centralized estimations at a **fraction of computational cost.**
- Historical matching is **crucial** to ensure constraints during realistic scenarios:
 - 27% frames matched to other robots' most recent frames.
 - 42% frames have matched if using historical.

 Table 1: Relative pose error (RPE) on TUM-VI datasets in degrees / meters

 averaged over all robots for the dataset.

Algorithm	40m	60m	$80\mathrm{m}$	100m	120m	
indp-slam	$1.818 \ / \ 0.093$	$2.833 \ / \ 0.126$	$2.604\ /\ 0.154$	$2.774\ /\ 0.185$	$2.716\ /\ 0.215$	
ce-cmsckf ce-cmsckf-cslam	1.358 / 0.071 1.758 / 0.069	1.321 / 0.091 1.350 / 0.079	1.357 / 0.108 1.027 / 0.100	0.843 / 0.128 0.718 / 0.119	0.932 / 0.140 0.938 / 0.130	
dc-cmsckf dc-cmsckf-cslam dc-full-window dc-full-history	1.662 / 0.075 1.800 / 0.080 1.768 / 0.075 1.213 / 0.067	2.005 / 0.104 2.642 / 0.093 2.218 / 0.091 1.232 / 0.061	1.605 / 0.129 2.233 / 0.106 1.788 / 0.109 1.029 / 0.065	1.142 / 0.141 1.544 / 0.114 1.257 / 0.123 1.004 / 0.068	1.531 / 0.170 0.934 / 0.157 0.854 / 0.159 0.784 / 0.072	



Inclusion of common features always improves both centralized and decentralized estimators. Historical matching able to outperform all other methods (even the centralized)!

OpenVINS open source [ICRA 20]: <u>https://github.com/rpng/open_vins</u>

Summary

- Other significant results achieved in 2021-2022:
 - MIMC-VINS: Multi-IMU multi-camera VINS [TRO 22]
 - DRI-VINS: Decoupled right invariant error states for VINS [RA-L 22]
 - FEJ2: Consistent visual-inertial state estimator design [ICRA 22]
 - Code-VIO [ICRA 21] (Best Paper Finalist in Robot Vision)
 - MINS: Multi-sensor aided inertial navigation system [ICRA 21]
 - MPTAM: Markov parallel tracking and mapping [ICRA 21]
 - C-VIO: Cooperative visual-inertial odometry [ICRA 21]
- My Research Lab: Robot Perception and Navigation Group (RPNG)

YouTube

GitHub

Thank you!