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Overview

Objective
Coordinate the charging of a large number of electric
vehicles (EVs).
EVs act autonomously, distributed decision-making.
Trade-offs:

Each EV desires a certain energy delivery over its charging
period.
Minimize battery degradation.
Minimize total energy cost.

Approach
Auction-based game.
Progressive second-price (PSP) auction mechanism.

This form of auction achieves incentive compatibility.
All participants fare best when they truthfully reveal their
private information.
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EV charging model

Coordinate charging of a population of EVs, N , {1, · · · ,N},
over a finite charging horizon T , {0, · · · ,T − 1}.

For each EV, n ∈ N , the energy delivered over the t-th time
period is denoted xnt .
The battery state of charge (SoC) evolves according to

sn,t+1 = snt +
1

Θn
xnt

where Θn is the battery capacity and snt is the normalized
SoC for the n-th EV at time t .
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EV charging model (continued)

An admissible charging strategy, xn ≡ (xnt , t ∈ T ), satisfies the
constraints:

xnt

{
≥ 0, when t ∈ Tn

= 0, otherwise
, with

T−1∑
t=0

xnt ≤ Γn

Tn ⊂ T denotes the charging interval of the n-th EV.
Γn = Θn(smax

n − sn0) gives the maximum energy that can
be received by the n-th EV.
0 ≤ sn0 ≤ smax

n ≤ 1 describes the (normalized) minimum
and maximum SoC.

The set of admissible charging strategies is denoted by Xn.
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EV utility

The utility function of the n-th EV is given by:

wn(xn) = −
T−1∑
t=0

fn(xnt )− δn

(
T−1∑
t=0

xnt − Γn

)2

fn(·) denotes the battery degradation cost of the n-th EV.
A measure of the cost associated with the decrease in the
battery capacity due to battery resistance growth.

The second term captures the cost of not fully charging the
EV.
δn is a fixed parameter that weights the relative importance
of delivering the full charge.

The utility function wn(xn) establishes the tradeoff between the
battery degradation cost and the benefit derived from delivering
the full charge.
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System cost

The system cost is given by:

Js(x) =
T−1∑
t=0

c
(

Dt +
N∑

n=1

xnt

)
−

N∑
n=1

wn(xn),

Subject to a collection of admissible charging strategies x .
c(·) denotes the generation cost.
Dt is the aggregate inelastic background demand at time t .
Dt +

∑N
n=1 xnt is the total demand at time t .

The centralized EV charging coordination problem can be
formulated as:

x∗∗ = argmin
x∈X

Js(x)

The collection of efficient charging strategies is given by x∗∗.
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Assumptions

(A1) c(·) is monotonically increasing, strictly convex and
differentiable.

(A2) fn(·), for all n ∈ N , is monotonically increasing, strictly
convex and differentiable.

The generation cost c(·) is widely assumed to be a convex
function of total generation.
The battery degradation cost fn(·) is governed by the
chemical processes inherent in charging.

It has been shown that the growth of battery resistance,
hence the fade of battery energy capacity, is generally
increasing and convex with respect to charging rate.
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Bid profiles of individual EVs

Each EV submits a 2T -dimensional bid profile:

bnt = (βnt ,dnt ), with dnt

{
≥ 0, when t ∈ Tn

= 0, otherwise
, and

T−1∑
t=0

dnt ≤ Γn

βnt is the price that the n-th EV is willing to pay for energy
at time t .
dnt is the maximum electrical energy that is desired at that
time, so 0 ≤ xnt ≤ dnt for all t ∈ T .
Let bn ≡ (bnt , t ∈ T ) and Bn denote the allowable set of
bids for the n-th EV, with bn ∈ Bn.

Each EV’s revealed utility function is defined as:

ŵn(xn(bn); bn) ,
T−1∑
t=0

βnt min(xnt ,dnt ) =
T−1∑
t=0

βntxnt



Background Auction mechanism Nash equilibrium analysis Conclusions

Revealed system cost

The revealed system cost with respect to a collection of bid
profiles b ≡ (bn,n ∈ N ) is given by:

J(x(b); b) =
T−1∑
t=0

c(Dt +
N∑

n=1

xnt )−
N∑

n=1

ŵn(xn(bn); bn)

Auction-based EV charging allocation can be written as the
optimization problem:

J∗(b) = min
0≤x≤d

J(x(b); b)

The objective of the auctioneer is to assign an optimal
allocation x∗(b) with respect to bid profiles b to minimize the
revealed system cost J.
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Efficient allocation

Lemma
Consider a collection of bid profiles,

b∗nt = (β∗nt ,d
∗
nt ) =

(
∂

∂xnt
wn(x∗∗n ), x∗∗nt

)
for all n ∈ N and t ∈ T . Then, under Assumptions (A1,A2),
x∗(b∗) = x∗∗, i.e., the optimal charging allocation x∗ of the
auction with respect to b∗ is efficient. Also,

β∗nt

{
= c′(Dt +

∑N
k=1 d∗kt ), if x∗nt > 0

≤ c′(Dt +
∑N

k=1 d∗kt ), if x∗nt = 0
, for all n ∈ N , t ∈ T

i.e., all EVs with an allocation larger than zero share the same
marginal price as the generation.
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Incentive compatibility

Incentive compatibility holds under the PSP auction
mechanism.

A bid profile with price satisfying βnt = ∂
∂dnt

wn(dn), as is
the case in the previous Lemma, is the best choice among
all possible bid profiles.
It follows from the EV utility function that the truth-telling
bid profile of the n-th EV is given by:

βnt = −f ′n(dnt ) + 2δn

(
Γn −

T−1∑
t=0

dnt

)

An EV’s marginal valuation at each time-step is determined
by both its electrical energy request dnt at that time and its
total energy request

∑
t dnt over the entire multi-period

charging horizon.
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EV payment

Each EV’s payment is the externality imposed on the system
through its participation in the auction.

For the n-th EV, this is given by the system-wide utility
when the n-th EV does not join the auction process, minus
the system-wide utility (but excluding the contribution of the
n-th EV itself) when the n-th EV joins the auction.
To express this payment, it is convenient to write the
collection of bid profiles as b ≡ (bn,b−n).
The payment of the n-th EV is given by:

τn(b) = −J∗(0n,b−n)−

(
−J∗(b)−

T−1∑
t=0

βntx∗nt (b)

)

(0n,b−n) denotes the bid profile without the n-th EV’s
participation.
x∗(b) is the optimal charging allocation with respect to b.
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EV payoff

The payoff function of the n-th EV is given by the difference
between the EV’s utility and its payment:

un(b) = wn(x∗n(b))− τn(b)

This payoff function provides the basis for defining a Nash
equilibrium for the PSP auction game.

Definition

A collection of bid profiles b0 is a Nash equilibrium for the EV
charging allocation auction if:

un(b0
n,b

0
−n) ≥ un(bn,b0

−n)

for all bn ∈ Bn and for all n ∈ N . That is, no EV can benefit by
unilaterally deviating from its bid profile b0

n.
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Nash equilibrium

Theorem
Under Assumptions (A1,A2), the efficient bid profile
b∗ ≡ (b∗n; n ∈ N ) satisfies the property:

un(b∗n,b
∗
−n) ≥ un(bn,b∗−n), for all bn ∈ Bn

and is therefore a Nash equilibrium for the underlying auction
game.

Direct verification that the efficient bid profile is optimal for
every individual EV is infeasible.

This is a consequence of the cross elasticity arising from
the summation term in each EV’s truth-telling marginal
valuation.
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Cross elasticity

To proceed, the set of bid profiles Bn can be partitioned into a
collection of subsets:

Bn(A) ,

{
bn ∈ Bn; s.t.

T−1∑
t=0

dnt = A

}

This eliminates cross elasticity for bid profiles in Bn(A).
It is sufficient to show that b∗ is a Nash equilibrium, if for every
fixed A ∈ [0, Γn]:

un(b∗n,b
∗
−n) ≥ un(b̂n,b∗−n), for all b̂n ∈ Bn(A),

and for all n ∈ N .

Analysis considers two cases: A ≥
∑T−1

t=0 d∗nt and
0 ≤ A <

∑T−1
t=0 d∗nt .
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Verification when A ≥
∑T−1

t=0 d∗nt

Let x∗ and x̂ denote the optimal allocations with respect to b∗

and (b̂n,b∗−n), where b̂n ∈ Bn(A).

Lemma

If A ≥
∑T−1

t=0 d∗nt then x̂mt = d∗mt , for all m ∈ N \ {n}, i.e., each of
the EVs m ∈ N \ {n} is fully allocated.

Using this result, it can be shown that:

∆un , un(b∗)− un(b̂n,b∗−n) ≥ 0

The n-th EV cannot benefit by unilaterally changing its bid
profile b∗n to any other bid profile b̂n ∈ Bn(A).



Background Auction mechanism Nash equilibrium analysis Conclusions

Verification when 0 ≤ A <
∑T−1

t=0 d∗nt

Lemma

Consider a bid profile b̂
∗
n ≡ b̂

∗
n(A) ≡

(
(β̂∗nt , d̂

∗
nt ), t ∈ T

)
, with

A ∈ [0,
∑T−1

t=0 d∗nt ), such that

b̂
∗
n = argmax

b̂n∈Bn(A)
un(b̂n,b∗−n)

Let x̂∗ ≡ (x̂∗kt , k ∈ N , t ∈ T ) denote the optimal allocations with
respect to (b̂

∗
n,b

∗
−n). Then,

x̂∗n = d̂
∗
n, x̂∗m = d∗m for all m ∈ N \ {n}

i.e., all EVs are fully allocated.

It can then be shown that ∆un , un(b∗)− un(b̂
∗
n,b

∗
−n) ≥ 0.
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Conclusions

This work considers the tradeoff between:
Economics (cost of energy)
Resilience (battery degradation)

in the context of electric vehicle charging.
Use of the progressive second price (PSP) auction
mechanism ensures incentive compatibility.
The efficient solution is a Nash equilibrium.
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