
Towards Resilience in CPS
Software Platforms

Gabor Karsai, Daniel Balasubramanian, Abhishek Dubey, Will Emfinger,
Pranav Kumar, Will Otte

ISIS/Vanderbilt University

http://www.berkeley.edu/

Page 2

A ‘CPS Cloud’: A Distributed Sensor/Control
Network Platform

Sensor Propulsion Actuator

Processing/Storage Network

Networked node with local
processing and storage, sensors,
actuators (and propulsion) system: Nodes for an ad-hoc network that has 1+ link to a ‘base

station’ perform coordinated sensing/control functions

The CPS Cloud is used as a Open
Sensing/Computing/Actuation Platform
where various customer applications
can run, side-by-side.

Examples:
•Coordinated swarm of UAVs for tornado damage
surveillance running sensor fusion apps
•Fleet of UUVs collecting climate change data
from oceans running sensor fusion and motion
control apps
•Nodes on the Smart Electric Grid running
distributed monitoring and control apps

Challenges:
•Networked, distributed control
•Fault- and security resilience
•Applications with different trust and security
levels must run side-by-side

Goal: Platform as a Service

Page 3

Concepts for a CPS Platform

Property Characteristics

Distributed Distributed applications are deployed and managed on multiple hosts connected to

a network

Diverse applications may interact with each other

Resources (including I/O devices) are network-accessible and can be shared among

applications

Some applications are ‘open’ – interact with the external network

Most applications interact only via the internal network

Real-time Real-time requirements are imposed on the system: response time, message

latency, time-triggered activities, guaranteed processor and network

bandwidth/timeliness

Platform provides real-time guarantees

Applications must interact with the physical world through I/O devices

Embedded System is embedded in a physical environment with its constraints on dynamics

Some highly specialized/restricted user interface with constrained interactions

Page 4

Definition of ‘resilience’:
Capable of withstanding shock without permanent deformation or rupture. Tending to
recover from or adjust easily to misfortune or change. [Webster]
The persistence of the avoidance of failures that are unacceptably frequent or severe,
when facing changes. [Laprie, ‘04]

Concepts for a CPS Platform

Property Characteristics

Resilience System must be resilient to faults, changes, and security attacks

System is functional even under partial fault conditions

Anything can fail at any time – platform provides mechanisms to implement fault

tolerance for the applications and the system

Some faults are handled autonomously by the platform

Deliberate updates to the system are expected, system is resilient to faults in updates

Anything can change at any time – environment, system configuration, executables –

platform provides services to detect and mitigate such changes

Anything can be attacked at any time, apps are trusted to a varying degree

Applications are informed about fault conditions and can mitigate their effects

Secure Untrusted applications are not to interfere with system functions or other apps

Apps with different security level are isolated and operate side-by-side

Page 5

DREMS:
An Experimental Toolchain and Platform

Software toolchain
for modeling,

synthesis, analysis,
and verification

Software platform with
support for resource
sharing, security, and

fault tolerance

The software will be released under the MIT/X Open Source License.

Platform prototype
development
supported by:

Page 6

Platform Prototype Testbed Setup

Model-driven
Development
Environment

Physics simulator
(Orbiter)

Networked
Embedded
Processors

Not shown:
Network emulator

Foundations: Linux Kernel modified to implement new, secure system calls, CORBA/DDS
middleware, novel component framework, privileged system management services

Page 7

Resilience as addressed currently

Principle Details

Platform protection System service entry interfaces are protected by auto-generated guards

Application isolation Applications are spatially and temporally isolated from each other, all

information flows are managed (including covert channels)

Managed network Network is strictly controlled – apps cannot communicate arbitrarily

All information flows on the network are pre-configured before the

applications starts

Managed applications Application deployment and configuration is performed by trusted entity

Applications can be started and managed only by a privileged process

Component-based

development

Apps are integrated from reusable, configurable, verified components

rather than being built from scratch

Modeling and model-

driven development

Software: interfaces, components, architecture, etc. is modeled, glue

code and infrastructure configuration is generated, models can be

analyzed

Dubey, Abhishek, William Emfinger, Aniruddha Gokhale, Gabor Karsai, William R. Otte, Jeffrey Parsons,
Csanád Szabó, Alessandro Coglio, Eric Smith, and Prasanta Bose. "A software platform for fractionated
spacecraft." In Aerospace Conference, 2012 IEEE, pp. 1-20. IEEE, 2012.

Page 8

Resilience framework: Mechanisms
Research problems

Core platform capabilities

Anomaly detection - health monitoring
Run-time monitoring of application
components, system interfaces, kernel
integrity, shared resources, network
interfaces

Group membership verification

Integrated fault tolerant leader election

Diagnostics
Root cause determination

Distributed reasoning / no central authority

System ‘state’ estimation

Mitigation
Local / reactive mitigation

Coordinated, global, distributed recovery

Autonomous vs. managed response

Core platform services

• Resilient software deployment
– Robust deployment of software

applications, with transactional/roll-back
capabilities

• Multi-level fault management
– Each level: (1) assumes properties of lower

levels, and (2) guarantees properties for
higher levels

– Each level detects/diagnoses/recovers
(while it can)

– Component framework must provide
resilience services

– Aspects of fault management are
customizable for the applications

Modeling/Analytical capabilities
• Given a model of the architecture and assumed

failure/threat models, is the system resilient?

