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Motivation

The online learning model

I Is a realistic model for population dynamics (weak information
assumptions)

I Has convergence guarantees

Can be used

I As a model of population dynamics for optimal control

minimizeu∈U
∑
t

J(t)(u(t), µ(t))

subject to µ(t+1) = h(t)(u(t), µ(t))

I As an algorithm for distributed load balancing.

I Fast convergence = fast recovery.
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Routing game
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Figure : Example network

I Graph (V ,E)

I Source-sink pairs, (sk , tk): paths Pk

I Population distribution µk ∈ ∆Pk ,

I Loss on path p: `kp(µ)

I Players want to minimize personal loss
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Online learning model

π(t) Sample p ∼ π(t) Discover `(t) Update π(t+1)



Convergence to Nash equilibria

Nash equilibria

N = arg min
µ∈∆

V (µ)

Average strategies

µ̄(T ) =
∑
t≤T

ηtµ
(t)/
∑
t≤T

ηt

Convergence of averages to Nash equilibria

If an update has sublinear regret, then

µ̄(T ) → N

Proof: show
V (µ̄(T ))− V (µ∗) ≤

∑
k

r̄ k(T )
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Example dynamics

Hedge algorithm

π(t+1)
p ∝ π(t)

p e−ηt`
k(t)
p

REP algorithm

π(t+1)
p = πk(t)

p + ηtπ
k(t)
p

(〈
`k(t), πk(t)

〉
− `k(t)

p

)



Simulations
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(b) Path flows
(
µk(t)
p

)
p∈Pk
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(c) Path losses `kp(µ(t))

Figure : Population dynamics under Hedge updates with ηt ↓ 0 and
∑

t ηt = ∞



Convergence of (µ(t))t

I Have µ̄(t) → N .

Sufficient condition 1
If V (µ(t)) converges, then µ(t) → N
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Approximate Replicator algorithms

Underlying continuous time. Updates happen at η1, η1 + η2, . . .

. . .
0 η1 η1 + η2

Figure : Underlying continuous time

In µ
(t+1)
p ∝ µ(t)

p e−ηt`p(t), take ηt → 0

Replicator equation

∀p ∈ Pk ,
dµk

p

dt
= µk

p(
〈
`k(µ), µk

〉
− `kp(µ))
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Approximate Replicator algorithms

Discretization of the continuous-time replicator dynamics

Approximate REP algorithm

π(t+1)
p − π(t)

p = ηtπ
(t)
p

(〈
`k(µ(t)), π(t)

〉
− `kp(µ(t))

)
+ ηtU

k(t+1)
p

(U(t))t≥1 perturbations that satisfy for all T > 0,

lim
τ1→∞

max
τ2:
∑τ2

t=τ1
ηt<T

∥∥∥∥∥∥
τ2∑

t=τ1

ηtU
(t+1)

∥∥∥∥∥∥ = 0

Theorem
Under any no-regret algorithm which is AREP, µ(t) → N .

Uses sufficient condition 1.



Approximate Replicator algorithms

Discretization of the continuous-time replicator dynamics

Approximate REP algorithm

π(t+1)
p − π(t)

p = ηtπ
(t)
p

(〈
`k(µ(t)), π(t)

〉
− `kp(µ(t))

)
+ ηtU

k(t+1)
p

(U(t))t≥1 perturbations that satisfy for all T > 0,

lim
τ1→∞

max
τ2:
∑τ2

t=τ1
ηt<T

∥∥∥∥∥∥
τ2∑

t=τ1

ηtU
(t+1)

∥∥∥∥∥∥ = 0

Theorem
Under any no-regret algorithm which is AREP, µ(t) → N .

Uses sufficient condition 1.



Summary

Convergence of µ(t) under

I No-regret and AREP algorithms

Current work

I Optimal control under online-learning dynamics

I Robustness of convergence (perturbations in losses)

I Distributed tolling and load balancing
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Thank you.


