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Objective
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We are interested in modeling, 
and defending against, cyber 
attacks that trigger physical 

contingencies.

Cyber
Network

Physical
System

❖ We propose a model for the graceful degradation of 
cyber-physical systems while subject to persistent 
attacks from an adversary



Cyber-physical Systems

7

1. Cyber network

❖ Forms the computational, comm., 
and control structure of the system

2. Physical infrastructure

❖ Represents the physical network of 
connections, switches, and sensors

❖ Dynamics of the (continuous) physical 
state       are dictated by laws of nature

} tightly 
integrated

at all time-scales
and levels

xt



Cyber Layer
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goal nodes

❖ Attacks are modeled using a 
dependency graph
❖ Nodes: attacker capabilities
❖ Edges: exploits
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Defender’s Information
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❖ The defender does not know the security state,     , with 
certainty

❖ Furthermore, the defender must estimate the physical 
state,     , using data from sensors 

xt

st

exploit 
attempts

security
alerts

Intrusion
detection
system



Goal Nodes
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❖ Enabled goal conditions give the 
attacker physical capabilities

physical elements that the attacker 
can influence from i

Pi :
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❖ Attacker can then trigger 
physical failures 

❖ Severity is dependent upon the 
current physical state,



Operating Modes
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❖ The defender wishes to continue to operate the system, 
at reduced performance, while it is under attack

❖ Define set of operating modes,      , 

❖ Each operating mode                 defines a structure for:

cyber network
• port connectivity, active 

services, trust relationships 

physical network
• status of relays, breakers, 

sensors, valves

M

)

) physical network 
topology

dependency graph
vulnerability 

analysis

m 2 M
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xt+1 = g

1(xt)

st+1 = f1(st) st+1 = f2(st)

xt+1 = g

2(xt) xt+1 = g

m(xt)

st+1 = fm(st)

mode 1 mode 2 mode m
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xt+1 = g

1(xt)

st+1 = f1(st) st+1 = f2(st)

xt+1 = g

2(xt) xt+1 = g

m(xt)

st+1 = fm(st)

mode 1 mode 2 mode m

❖ Defense Problem: The defender uses its belief of              
to control the transitions between operating modes 

❖ The defender is attempting to maximally interfere with 
the progression of the attacker while maintaining 
functionality of the network

(st, xt)



Ongoing Work
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❖ Past work on the defense of cyber networks

E. Miehling, M. Rasouli, and D. Teneketzis. Optimal Defense Policies for 
Partially Observable Spreading Processes on Bayesian Attack Graphs 
(MTD Workshop — CCS 2015)

E. Miehling, M. Rasouli, and D. Teneketzis. A POMDP Approach to 
Autonomic, Dynamic Defense of Large-Scale Cyber Networks (to be 
submitted to IEEE Transactions on Information Forensics and Security)

❖ Current work is focused on integrating the physical 
system



Summary
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❖ The model allows us to relate attacker capabilities to 
spatial regions of the physical infrastructure

❖ The security state tells us likely physical contingencies 
and, coupled with the physical state, the severity of the 
potential damage

❖ Controlling the operating mode decreases the chances 
that the attack will succeed and ensures that the system 
is prepared for any contingencies
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