
Scalable Supervisory Control Approach for
Dynamic Cybersecurity

Mohammad Rasouli, Erik Miehling, Demosthenis Teneketzis
Dept. of Electrical Engineering & Computer Sciences,

University of Michigan, MI, USA

NSF FORCES Grant: CNS-1238962

1 / 21



Outline
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I Model
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Motivation

I Key issues in cyber-security systems
I Progressive attacks
I Dynamic/adaptive defense
I Imperfect information (for attacker and/or defender) of system status
I Non-strategic vs. strategic attacker (control vs. game theory)
I Complexity of security problems growing in time and in scale of the

network.
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Contribution

A supervisory control approach for cyber-security from the point of view of
the defender with

I progressive attacks,

I defender’s imperfect information,

I dynamic defense,

I conservative approach to security,

I quantification of defender cost of state and action,

that achieves

I quantification of the performance of various defender policies,

I determination of the defender’s optimal policy (within a restricted set) for
a min-max performance criterion

I scalabe in time and size of the security environments

4 / 21



Contribution

A supervisory control approach for cyber-security from the point of view of
the defender with

I progressive attacks,

I defender’s imperfect information,

I dynamic defense,

I conservative approach to security,

I quantification of defender cost of state and action,

that achieves

I quantification of the performance of various defender policies,

I determination of the defender’s optimal policy (within a restricted set) for
a min-max performance criterion

I scalabe in time and size of the security environments

4 / 21



Contribution

A supervisory control approach for cyber-security from the point of view of
the defender with

I progressive attacks,

I defender’s imperfect information,

I dynamic defense,

I conservative approach to security,

I quantification of defender cost of state and action,

that achieves

I quantification of the performance of various defender policies,

I determination of the defender’s optimal policy (within a restricted set) for
a min-max performance criterion

I scalabe in time and size of the security environments

4 / 21



Contribution

A supervisory control approach for cyber-security from the point of view of
the defender with

I progressive attacks,

I defender’s imperfect information,

I dynamic defense,

I conservative approach to security,

I quantification of defender cost of state and action,

that achieves

I quantification of the performance of various defender policies,

I determination of the defender’s optimal policy (within a restricted set) for
a min-max performance criterion

I scalabe in time and size of the security environments

4 / 21



Contribution

A supervisory control approach for cyber-security from the point of view of
the defender with

I progressive attacks,

I defender’s imperfect information,

I dynamic defense,

I conservative approach to security,

I quantification of defender cost of state and action,

that achieves

I quantification of the performance of various defender policies,

I determination of the defender’s optimal policy (within a restricted set) for
a min-max performance criterion

I scalabe in time and size of the security environments

4 / 21



Contribution

A supervisory control approach for cyber-security from the point of view of
the defender with

I progressive attacks,

I defender’s imperfect information,

I dynamic defense,

I conservative approach to security,

I quantification of defender cost of state and action,

that achieves

I quantification of the performance of various defender policies,

I determination of the defender’s optimal policy (within a restricted set) for
a min-max performance criterion

I scalabe in time and size of the security environments

4 / 21



Contribution

A supervisory control approach for cyber-security from the point of view of
the defender with

I progressive attacks,

I defender’s imperfect information,

I dynamic defense,

I conservative approach to security,

I quantification of defender cost of state and action,

that achieves

I quantification of the performance of various defender policies,

I determination of the defender’s optimal policy (within a restricted set) for
a min-max performance criterion

I scalabe in time and size of the security environments

4 / 21



Contribution

A supervisory control approach for cyber-security from the point of view of
the defender with

I progressive attacks,

I defender’s imperfect information,

I dynamic defense,

I conservative approach to security,

I quantification of defender cost of state and action,

that achieves

I quantification of the performance of various defender policies,

I determination of the defender’s optimal policy (within a restricted set) for
a min-max performance criterion

I scalabe in time and size of the security environments

4 / 21



Contribution

A supervisory control approach for cyber-security from the point of view of
the defender with

I progressive attacks,

I defender’s imperfect information,

I dynamic defense,

I conservative approach to security,

I quantification of defender cost of state and action,

that achieves

I quantification of the performance of various defender policies,

I determination of the defender’s optimal policy (within a restricted set) for
a min-max performance criterion

I scalabe in time and size of the security environments

4 / 21



Contribution

A supervisory control approach for cyber-security from the point of view of
the defender with

I progressive attacks,

I defender’s imperfect information,

I dynamic defense,

I conservative approach to security,

I quantification of defender cost of state and action,

that achieves

I quantification of the performance of various defender policies,

I determination of the defender’s optimal policy (within a restricted set) for
a min-max performance criterion

I scalabe in time and size of the security environments

4 / 21



Model: Network Structure
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Normal Compromised Fully compromised Remote compromised

I Possible states of each computer : Normal (L1), Compromised (L2), Fully
Compromised (L3), Remote Compromised (L4).
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Model: Timing

I Interaction rules between controller and nature

System state before nature’s event

System state before defender’s action
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I Time horizon ⇒ finite or infinite
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Model: Decision maker and its costs

Decision Maker
I One decision-maker

I Defender ⇒ controller/decision maker
I Attacker ⇒ nature

I Imperfect observation for defender

Costs

I Cost of state Z ⇒ C(Z)

I Cost of controllable event d ⇒ Ĉ(d), d ∈ D
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Model: Defender and Nature Actions

I Non-probabilistic dynamics
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Model: System Automaton
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Defender’s Optimal Policy
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Time Complexity: Information State

Defender problem has complex information structure

I History of observations and actions

For MinMax objective function can be translated to

I All system trajectories consistent with the history

Problem: Growing in time/Countably infinite

Due to Markovian and non-probabilistic
dynamics can be translated to

I All possible system states and maximum
cost of reaching each

Problem: Bounded but countably infinite
Solution: We propose the first approximation
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First Approximation: Observer States
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First Approximation: Observer States

Defender’s observer: the possible states that the network can be in at time t
from the defender’s perspective (defender has imperfect information).

12 / 21



First Approximation: Observer States

Defender’s observer: the possible states that the network can be in at time t
from the defender’s perspective (defender has imperfect information).

Observer Automaton: Dynamics of observer states
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The Defender’s Problem (P ′
D)

Problem (P ′D)

min
g∈G′

max
Z
g
t ∈St

{∑
t∈T

βt

[
CZ

g
t

+ Ĉ
(
dt
)]}

(P ′D)

subject to model dynamics

dt = gt(St), t ∈ T ,
St+1 = f (St , dt , a

′
t), t ∈ T .

G′ := {g | g := {gt , t ∈ T }, gt : S → D, dt = gt(St) for all t ∈ T }.
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Numerical Sensitivity Analysis for Two Computers
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Figure: Optimal defender policy (Reimage,
Sense, Null) with increasing cost of
Reimage.

I Threshold in Costs - If
d∗(S1) = Reimgae, by decreasing
the cost of Reimage, it remains
optimal action.

I Duality of Control and
Estimation - There is no Sensing
action in the optimal policy when
there is no Reimage.
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Network Scale Complexity

Figure: Number of observer states

Solution: We propose the second approximation
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Network Scale Complexity

Figure: Number of observer states

Solution: We propose the second approximation
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Second Approximation: Decomposition and Parallel Computation

1. Consider individual computers
coupled to other computers by
endogenous and exogenous
events.

2. Assume exogenous events are
always possible.

16 / 21



Numerical Results: Sets of policies for each computer

Figure: Computation based on local information

I Threshold in Observer States - If most costly state is more expensive in
S1 than S2, and d∗(S2) = Reimage then d∗(S1) = Reimage.

I Grouping - If S1 and S2 have same most costly state, then
d∗(S1) = d∗(S2).

I No sense action
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Summary

I Supervisory control approach to dynamic cyber-security from
defender’s perspective with imperfect information, progressive attacks,
and min-max performance criterion by use of system automaton

I Capturing complexity in time and scale of the network

I Dynamic programming with numerical results for determining defender’s
optimal min-max actions at each instant of time

I Structural properties
I Threshold behavior: costs of actions/states, observer states
I Grouping: Observer states with same optimal policies
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Future Research

I Extending approximations and using structural results for scalability

I Extending to probabilistic events (Bayesian framework)

I Game formulation: dynamic game with asymmetric information
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Thank you
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Appendix: observer automaton

Construction of observer automaton based on system automaton using
UMDES-LIB software library available on
https://www.eecs.umich.edu/umdes/toolboxes.html.
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