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> Introduction/Contribution
> Model

» Problem formulation

» Scalability of the approach
> Results

>

Summary/conclusion

[Preliminary version has shown up in GameSec2014 and FORCES Nov14
Annual Review]
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» Key issues in cyber-security systems

>

>
>
>
>

Progressive attacks

Dynamic/adaptive defense

Imperfect information (for attacker and/or defender) of system status
Non-strategic vs. strategic attacker (control vs. game theory)
Complexity of security problems growing in time and in scale of the
network.
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A supervisory control approach for cyber-security from the point of view of
the defender with

> progressive attacks,
» defender’s imperfect information,
» dynamic defense,
> conservative approach to security,
» quantification of defender cost of state and action,
that achieves
» quantification of the performance of various defender policies,
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a min-max performance criterion
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Contribution

A supervisory control approach for cyber-security from the point of view of
the defender with

> progressive attacks,
» defender’s imperfect information,
» dynamic defense,
> conservative approach to security,
» quantification of defender cost of state and action,
that achieves
» quantification of the performance of various defender policies,

> determination of the defender’s optimal policy (within a restricted set) for
a min-max performance criterion

> scalabe in time and size of the security environments
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D s; = Normal

i = Compromised

Routing Layer

Computer Layer

> Possible states of each computer : Normal (L1), Compromised (L2), Fully
Compromised (L3), Remote Compromised (L4).
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» Interaction rules between controller and nature

I T T I ;
t tt tt+ t+1
Defender Nature
Acts Acts

» Time horizon = finite or infinite
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Decision Maker
» One decision-maker

> Defender = controller/decision maker
> Attacker = nature
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Decision Maker
» One decision-maker

> Defender = controller/decision maker
> Attacker = nature

» Imperfect observation for defender
Costs
> Cost of state Z = C(Z)
» Cost of controllable event d = €(d),d € D
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Defender’s Actions D= {N“{E'}ien. {R'}ien}

- - —
Nature’s Events A= (N {FiViexnes. {H i jen}

Unobservable Observable

> Non-probabilistic dynamics
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System state before nature’s event

E;, N?

System state before defender’s action
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choose best detense policy compute worst case state trajectory under policy, g

i e
' C(d
I;JDEHQI {ZQEZ teT} {Z A z - ( t)

teT

subject to System dynamics
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Defender problem has complex informati

S = (S},..., M)

1,m1

1 1,1 1,my
Ky = max{r;, ...,k 1}

fe = (k.. 6"
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Defender problem has complex informati

> History of observations and actions
For MinMax objective function can be translated to

> All system trajectories consistent with the history

S = (S},..., M)

:

H/%,ml
rctl = max{n;’l, .. ,rctl’ml}
ke = (), ..., 5M)
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Due to Markovian and non-probabilistic
dynamics can be translated to
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Defender problem has complex informa
> History of observations and actions

For MinMax objective function can be translated to

> All system trajectories consistent with the history

Problem: Growing in time/Countably infinite

Due to Markovian and non-probabilistic
dynamics can be translated to

> All possible system states and maximum
cost of reaching each

Problem: Bounded but countably infinite
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Time Complexity: Information State

Defender problem has complex information structure
» History of observations and actions

For MinMax objective function can be translated to
> All system trajectories consistent with the history

Problem: Growing in time/Countably infinite

Due to Markovian and non-probabilistic
dynamics can be translated to

> All possible system states and maximum
cost of reaching each

Problem: Bounded but countably infinite
Solution: We propose the first approximation
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St+1 = f(St,dt,at)
X A v

observer state : observation

defense action
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St=(St17---7S¢M') \A

Defender’s observer: the possible states that the network can be in at time t
from the defender’s perspective (defender has imperfect information).

St+1 = .f(’s't’dt,a't)
X A v

observer state : observation

defense action
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Sy = (S},...,8M) |

Defender’s observer: the possible states that the network can be in at time t
from the defender’s perspective (defender has imperfect information).

St+1 = f(St,dt,at)
X A v

observer state : observation

defense action

Observer Automaton: Dynamics of observer states
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Problem (Pp)
i Y Cps + C(d P;
mm{zﬂ o+ € f)]} (o)

subject to model dynamics
dr = gt(S:), t €T,
5t+1 = f(St, dt, aé), t e T

G ={glg ={g,teT},g:S8—D,d=gS:) forall teT}
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States

9 14 19
Reimage cost

Figure: Optimal defender policy (Reimage,
Sense, Null) with increasing cost of

Reimage.
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> Threshold in Costs - If
d*(S1) = Reimgae, by decreasing
the cost of Reimage, it remains
optimal action.
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Figure: Optimal defender policy (Reimage,
Sense, Null) with increasing cost of
Reimage.

AR
14 /21



> Threshold in Costs - If
d*(S1) = Reimgae, by decreasing
the cost of Reimage, it remains
optimal action.

States

> Duality of Control and
Estimation - There is no Sensing
action in the optimal policy when
there is no Reimage.

0 5 9 14 19
Reimage cost

Figure: Optimal defender policy (Reimage,
Sense, Null) with increasing cost of
Reimage.
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Figure: Number of observer states

Solution: We propose the second approximation
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1. Consider individual computers
coupled to other computers by
endogenous and exogenous
events. Fornode 2: S, = {{L1}. (s La}. {Ea. Lo} {Ls. L)}

2. Assume exogenous events are
always possible.

endogenous exogenous
v v
A= {wa Hen; Hea:}
4 v h

observation space linking actions

(:;) FORCES

FOUNDATIONS OF RESILIENT

16/21



S% = {Ls}

7= {Ly. Ly, Lu}

8% ={L1, Ly, Ls, L}

S% = {Ls,La}
S4={Ly, L3}
S*={L1, L2, L3}
5% ={Ls}

§'={L1, L2}
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Re-image cost, r
B Re-inage
W Nt

Figure: Computation based on local information
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Figure: Computation based on local information

» Threshold in Observer States - If most costly state is more expensive in
51 than Sz, and d*(52) = Reimage then d*(51) = Reimage.
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Figure: Computation based on local information

» Threshold in Observer States - If most costly state is more expensive in
51 than Sz, and d*(52) = Reimage then d*(51) = Reimage.

» Grouping - If S; and S, have same most costly state, then
d*(51) = d*(52).
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Figure: Computation based on local information

» Threshold in Observer States - If most costly state is more expensive in
51 than Sz, and d*(52) = Reimage then d*(51) = Reimage.

» Grouping - If S; and S, have same most costly state, then

d*(S1) = d*(52).

» No sense action

S = (L}
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» Supervisory control approach to dynamic cyber-security from
defender’s perspective with imperfect information, progressive attacks,
and min-max performance criterion by use of system automaton
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» Supervisory control approach to dynamic cyber-security from
defender’s perspective with imperfect information, progressive attacks,
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» Capturing complexity in time and scale of the network

» Dynamic programming with numerical results for determining defender’s
optimal min-max actions at each instant of time
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Summary

» Supervisory control approach to dynamic cyber-security from
defender’s perspective with imperfect information, progressive attacks,
and min-max performance criterion by use of system automaton

» Capturing complexity in time and scale of the network
» Dynamic programming with numerical results for determining defender’s
optimal min-max actions at each instant of time

» Structural properties

> Threshold behavior: costs of actions/states, observer states
> Grouping: Observer states with same optimal policies
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» Extending approximations and using structural results for scalability
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» Extending approximations and using structural results for scalability

» Extending to probabilistic events (Bayesian framework)
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» Extending approximations and using structural results for scalability
» Extending to probabilistic events (Bayesian framework)

» Game formulation: dynamic game with asymmetric information
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Thank you
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onstruction of observer automaton bas
UMDES-LIB software library available on

https://www.eecs.umich.edu/umdes/toolboxes.html.
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