

Operations of Freeways with Capacity Disruptions

Li Jin and Saurabh Amin Massachusetts Institute of Technology [jnl, amins]@mit.edu

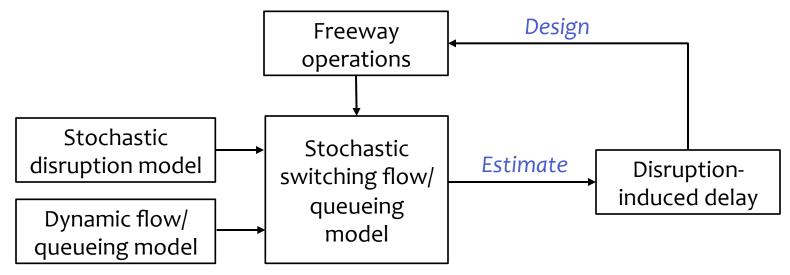
Motivation: Disruptions in Transportation Systems

- * Disruptions: any capacity-reducing events.
- * Accidents, bad weather, work zone, etc.

- * Freeway capacity: intrinsically a random variable [Brilon 05]
- * Major impact: disruption-induced delay

Main question

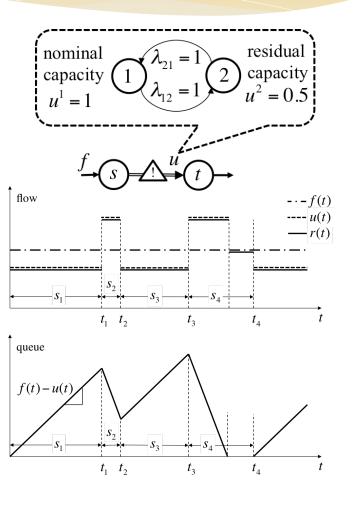
* How to incorporate disruptions into freeway operations design?


* Two steps:

- * Estimate disruption-induced delay.
- * Design freeway operations that minimizes disruption-induced delay.

Our Method

- * Disruption model: Markov chain [Skabardonis 97, Jin 16c]
 * Occurs as Poisson arrivals, duration exponentially distributed
- * Traffic model: cell transmission model [Jin 15a], deterministic queueing model [Jin 16b], etc.



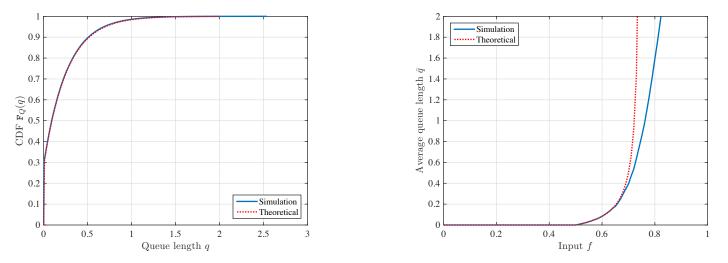
Starting Point: Single Link

- * Comprehensive analysis: [Jin 16b]
- * Constant inflow rate f = 0.6 per unit time.
- * Saturation rate u:
 - * Switches between 1.0 and 0.5
 - * Markov transitions, $p_1 = p_2 = 0.5$.
- * Queue size q: change at rate f u.
- Piecewise-deterministic queueing (PDQ) model [Jin 16b]
- * Is the queue size q finite WP1?
- * Steady-state distribution of q?

Stability of a Single Link

- * Necessary condition: inflow $f < time-average saturation rate <math>\bar{u}$.
 - * Based on mass conservation; proof in [Jin 16b].
 - * $f = 0.6 < \bar{u} = 0.5(1.0) + 0.5(0.5) = 0.75$.
- * *ū*: effective capacity of the link.
- * Sufficient condition: Lyapunov function $V = k_i \exp(bq)$.
 - * If there exist k_1, \dots, k_z , and b such that LV < K CV, the link is stable.
 - * Based on Harris' theorem [Cloez 15]; proof in [Jin 16b].

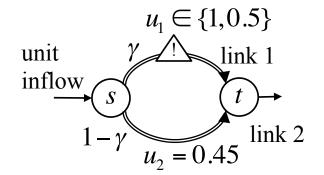
* $f = 0.6 \rightarrow$ Exist such as Lyapunov function.


 Necessary condition & sufficient condition generally not equivalent, but turn out to be equivalent in this example.

Queue Size in a Single Link

* Closed-form solution for two-mode systems [Jin 16]

- Distribution: probability mass at 0 + scaled exponential
- * Expected value: blows up as *f* approaches *ū*.

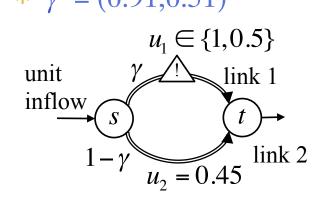


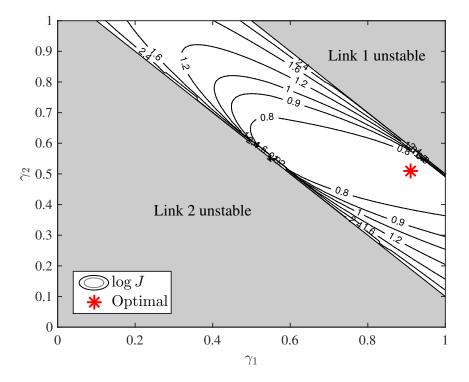
* Queue size (delay) very sensitive to capacity drop and duration.

Network Operations: Diversion

- * Two parallel links
 - Link 1: u₁ switches between 1.0 and 0.5.
 - * Link 2: no disruptions, $u_2 = 0.45$.
- * Diversion during disruption:

- * When $u_1 = 1.0$ (nominal condition), send γ_1 traffic to link 1.
- * When $u_1 = 0.5$ (disruption), send γ_2 traffic to link 1.
- * Queues in both links: tradeoff needed.
- * Set of diversion policies: [0,1]²
 - * What is the set of stable diversion policies?
 - * What is the optimal (minimum total queue size) diversion policy?


Design of Diversion during Disruptions


* Set of stable policies:

- * $\gamma_1 + \gamma_2 > 1.1$
- * $\gamma_1 + \gamma_2 < 1.5$

* Optimal policy:

* $J = q_1 + q_2$ * $\gamma^* = (0.91, 0.51)$

References

- * [Skabardonis 97] Skabardonis, Alexander, et al. "I-880 field experiment: analysis of incident data." Transportation Research Record: Journal of the Transportation Research Board 1603 (1997): 72-79.
- * [Brilon 05] Brilon, Werner, Justin Geistefeldt, and Matthias Regler. "Reliability of freeway traffic flow: a stochastic concept of capacity." Proceedings of the 16th International symposium on transportation and traffic theory. Vol. 125143. Suite 1C, Joseph's Well, Hanover Walk, Leeds LS3 1AB, UK: Maney Publishing, 2005.
- * [Cloez 15] Cloez, Bertrand, and Martin Hairer. "Exponential ergodicity for Markov processes with random switching." *Bernoulli* 21.1 (2015): 505-536.
- * [Jin 16a] Jin, Li, and Saurabh Amin. "Analysis of a Stochastic Switched Model of Freeway Traffic Incidents." *arXiv preprint arXiv:*1601.00204 (2016).
- * [Jin 16b] Jin, Li, and Saurabh Amin. "Stability and Control of Piecewise-Deterministic Queueing Systems." *arXiv preprint arXiv:1604.02008* (2016).
- * [Jin 16c] Jin, Li, and Saurabh Amin. "Modeling freeway saturation rates as stochastic switching signals." *working paper* (2016).

