

Resilient Cooperative Control in Tree Topology Networks

Xenofon Koutsoukos

Work with : Mark Yampolskiy and Yevgeniy Vorobeychik

Objective: Design of Resilient Consensus Protocols

- Distributed algorithms
 - Parameter and state estimation
 - Fault detection and diagnosis
 - Coordination and cooperative control

Resilient Consensus Protocols

- * Adversary model
 - * Crash
 - Malicious
 - * Byzantine
- Adversary scope
 - * F-total
 - * F-local
 - * *f*-fraction local
- * Resilient protocols

$$x_{i}(t+1) = w_{(i,i)}(t)x_{i}(t) + \sum_{j \in \mathcal{N}_{i}^{\text{in}}(t) \setminus \mathcal{R}_{i}(t)} w_{(j,i)}(t)x_{(j,i)}(t)$$

 Characterization of network resilience based on local information

Resilient Asymptotic Consensus

* Hybrid system dynamics

$$x_i(t+1) = f_{i,\sigma(t)}(t, x_i(t), \{x_{(j,i)}(t)\}), \ i \in \mathcal{N}, j \in \mathcal{N}_i^{\text{in}}, t \in \mathbb{Z}_{\geq 0}, \mathcal{D}_{\sigma(t)} \in \Gamma_n$$

* Agreement Condition

$$\lim_{t \to \infty} \Psi(t) = 0 \quad \text{where } \Psi(t) = M_{\mathcal{N}}(t) - m_{\mathcal{N}}(t)$$

Safety Condition

$$x_i(t) \in \mathcal{I}_t = [m_{\mathcal{N}}(t), M_{\mathcal{N}}(t)], \quad \forall t \in \mathbb{Z}_{\geq 0}, \forall i \in \mathcal{N}$$

* Weighted Mean-Subsequence-Reduced (W-MSR) Algorithm

Robust Networks

Threat	Scope	Necessary	Sufficient
Crash & Malicious	F-Total	(<i>F</i> +1, <i>F</i> +1)-robust	(<i>F</i> +1, <i>F</i> +1)-robust
Crash & Malicious	F-Local	(<i>F</i> +1, <i>F</i> +1)-robust	(2F+1)-robust
Crash & Malicious	<i>f</i> -Fraction local	<i>f</i> -fraction robust	<i>p</i> -fraction robust, where $2f$
Byzantine	F-Total & F- Local	Normal Network is (F+1)- robust	Normal Network is (F+1)-robust
Byzantine	<i>f</i> -Fraction local	Normal Network is <i>f</i> -robust	Normal Network is <i>p</i> -robust where $p > f$

- * [LeBlanc et al., IEEE JSAC, April 2013]
- * Normal network is the network induced by the normal nodes
- * Necessary Conditions for F-Total and F-Local are necessary for any successful DTRAC algorithm

Resilient Consensus in Tree Networks

- * Previous protocols require high-degree of redundancy
- * Assumption
 - * Adversaries can compromise only leaf nodes

Resilient Consensus for Tree Topology Network

- Trust parent node
- * Trusted value range
 - Between own and parent node value
- Remove F outliers if they are not in trusted value range
- Update state based on remaining values

Trusted value range

RangeMin = min (ownVal, parentVal) RangeMax = max (ownVal, parentVal)

$$x_{i}(t+1) = w_{(i,i)}(t)x_{i}(t) + \sum_{j \in \mathcal{N}_{i}^{\text{in}}(t) \setminus \mathcal{R}_{i}(t)} w_{(j,i)}(t)x_{(j,i)}(t)$$

[Yampolskiy et al., HiCoNS, 2014]

Emulation in DeterLab

Simulation Results

- * Adversary model
 - * Malicious nodes
 - * *F*-total = 5
 - * *F*-local = 3

- * Adversary model
 - * Malicious nodes
 - * *F*-total = 2
 - * *F*-local = 1

Current Work

- * El-aware resilient control design
- Distributed algorithms
 - Resilient state estimation
 - Resilient fault detection and diagnosis
- * Adversaries
 - DDOS attacks
 - * Multi-layer attacks
 - Synchronization attacks

