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We need to be able to verify the integrity and authenticity of messages!
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∗ For each message, sender 
computes an “authentication tag” 
using a secret key

∗ Adversary cannot forge a 
correct tag without knowing 
the key

∗ Receiver can verify the integrity 
and authenticity of the 
messages using the same key 
→ detect any attack

message tag

tag

MAC(msg, K)

tag’ ?=

MAC(msg’, K)
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∗ Computational demand of cryptographic primitives can be 
too high for resource-bounded devices 
∗ legacy devices in supervisory control systems 
∗ embedded or battery-powered devices (RFID tags, sensors)

∗ “Lightweight” cryptographic primitives 
∗ Decision to secure a system is still binary: either security is 

employed, incurring some fixed overhead, or it is not
∗ Our approach:  

general-purpose framework for trading off security and 
computational demand using an existing MAC scheme 
→ best-possible security for arbitrary resource-bound
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computationally less demanding, 
but does not protect integrity
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∗ For some messages, the sender 
computes a “fake tag”, which is 
computationally less demanding, 
but does not protect integrity

∗ Adversary cannot distinguish 
fake tags from correct tags

∗ Receiver can verify if a message has 
a fake or a correct tag efficiently 
→ detect attacks with high 
probability

msg tag

?

Fake(msg, K)

tag’ ?=

msg fake

MAC(msg, K)

fake’
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Game-Theoretic Model

∗ Stackelberg security game 
∗ we divide messages into C classes based on their potential to cause damage

Defender Attacker

Strategy choice
for each class c, the 
probability of 
authentication

for each class c, the 
number of modified / 
inserted messages

Detection probability

Payoff
attack undetected loses amount of damage, 

           i.e., -
gains amount of damage, 

           i.e.,

attack detected zero “punishment” -F



Theoretical Results

∗ Game-theoretic model of stochastic message authentication 
∗ Finding optimal authentication strategy
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Practical Results

∗ Proof-of-concept implementation using SHA-1 HMAC on an 
ATmega328P microcontroller
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Thank you for your attention!

Questions? 
!
Aron Laszka 
aron.laszka@vanderbilt.edu 
Yevgeniy Vorobeychik 
yevgeniy.vorobeychik@vanderbilt.edu 
Xenofon Koutsoukos 
xenofon.koutsoukos@vanderbilt.edu 
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