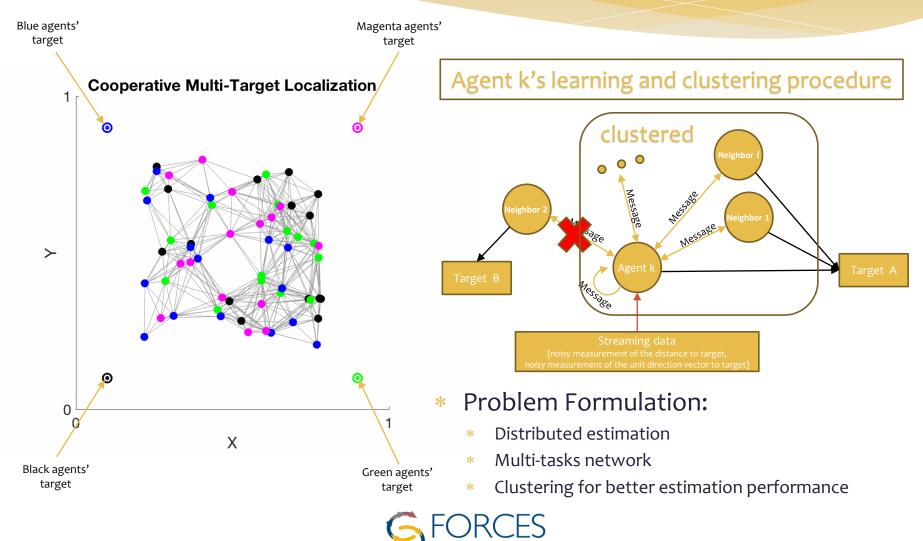


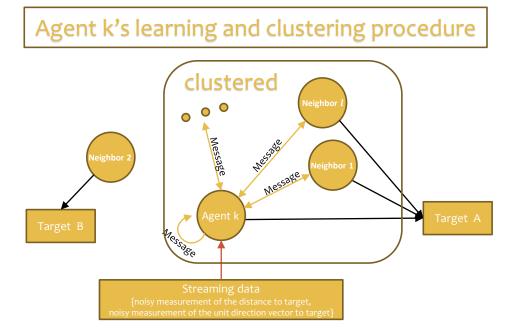
Resilient Diffusion Least-Mean Squares over Adaptive Networks for Distributed Clustering in CPS

Jiani Li and Xenofon Koutsoukos

Vanderbilt University



Motivating Application: Cooperative Multi-Target Localization

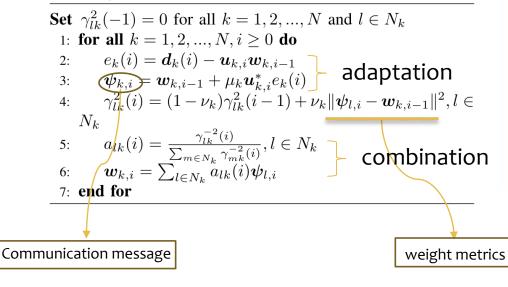


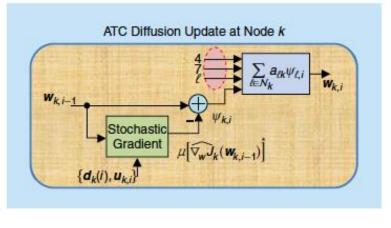
FOUNDATIONS OF RESILIENT CYBER-PHYSICAL SYSTEMS

Motivating Application: Cooperative Multi-Target Localization

* Other Applications:

- Cooperative data mining
- * Multi-task learning
- * Distributed clustering
- Intrusion detection
- Static target localization
- * Real-time learning, adaptation
 - * Mobile target localization
- * Spectrum sensing
- * Speech enhancement
- * Biological inspired design
 - * Fish schooling
 - * Bees swarming

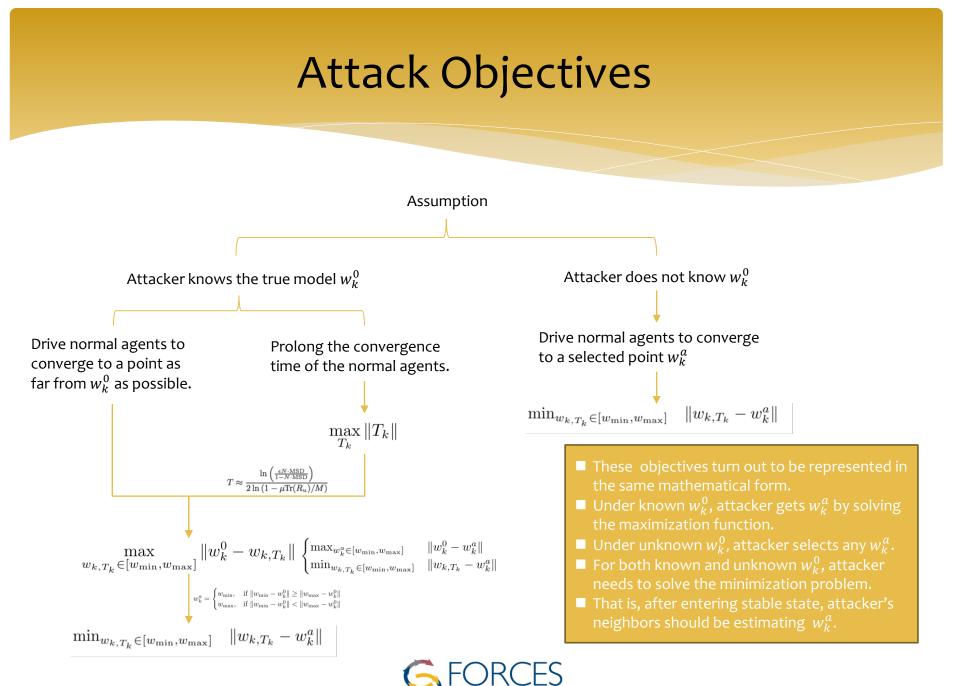


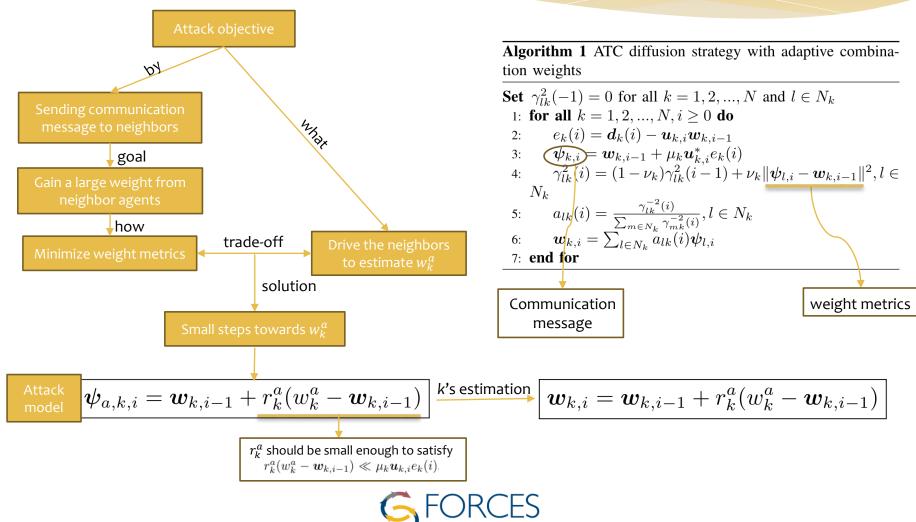

- * Problem Formulation:
 - Distributed estimation (stationary/time-varying)
 - * Multi-tasks network
 - * Clustering for better estimation performance

Diffusion Least-Mean Squares over Adaptive Networks for Distributed Clustering

Algorithm 1 ATC diffusion strategy with adaptive combination weights

Agents assign large weights to neighbors estimating a similar model with its own.

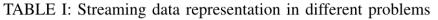

Ali H. Sayed, Sheng-Yuan Tu, Jianshu Chen, Xiaochuan Zhao, Zaid J. Towfic: Diffusion Strategies for Adaptation and Learning over Networks: An Examination of Distributed Strategies and Network Behavior. IEEE Signal Process. Mag. 30(3): 155-171 (2013)


Diffusion Least-Mean Squares over Adaptive Networks for Distributed Clustering

Q: Are these algorithms resilient to cyber-attacks?

Attack Model

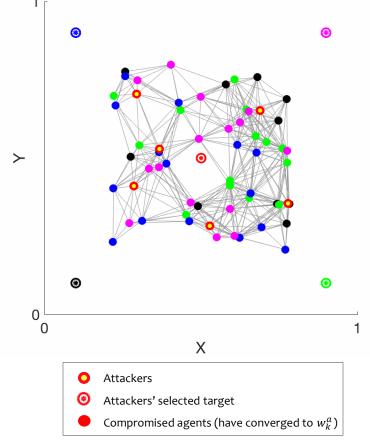
Attack Model


* How to get access to the neighbors' model $w_{k,i}$?

$$oldsymbol{w}_{k,i-1} = rac{oldsymbol{\psi}_{k,i} - \mu_k oldsymbol{u}_{k,i}^* oldsymbol{d}_k(i)}{1 - \mu_k oldsymbol{u}_{k,i}^* oldsymbol{u}_{k,i}}$$

- * Therefore, to deduce $w_{k,i-1}$, the attacker needs the knowledge of μ_k and streaming data $\{d_k(i), u_{k,i}\}$
 - * μ_k can be obtained if it is uniform for all agents
 - * $\{d_k(i), u_{k,i}\}$ are transferred from data fusion to agents can be intercepted by the attacker
 - * $\{d_k(i), u_{k,i}\}$ are sensed by agents can be obtained by the attacker if it can get access to the sensor of the agents

Attack model	$\boldsymbol{\psi}_{a,k,i} = \boldsymbol{w}_{k,i-1} + r_k^a (w_k^a - \boldsymbol{w}_{k,i-1})$	
	r_k^a should be small enough to satisf $r_k^a(w_k^a-oldsymbol{w}_{k,i-1})\ll \mu_koldsymbol{u}_{k,i}e_k(i)$	у


problem	w_k^0	$oldsymbol{d}_k(i)$	$oldsymbol{u}_{k,i}$
general distributed estimation / unsupervised clustering	estimated parameter	measurement received from data set	regression data received from data set
spectrum sensing / speech enhancement	signal transmitted by the source	signal received by agent k from the source	frequency-dependent attenuation factors over L frequency sample
target localization / biological design	target location	$d_k(i) \triangleq \rho_k(i) + u_{k,i} z_{k,i},$ $\rho_k(i)$ - sensed (noisy) distance measurement between agent k and target, $z_{k,i}$ - agent k's location	sensed (noisy) unit-norm direction vector pointing from the agent toward the target

Select minimum set of agents to attack

Attacked Cooperative Multi-Target Localization

Attack model

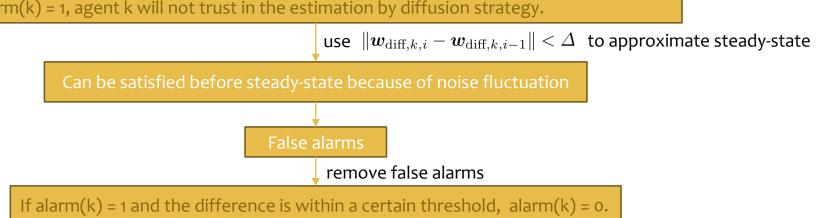
$$\psi_{a,k,i} = \boldsymbol{w}_{k,i-1} + r_k^a (w_k^a - \boldsymbol{w}_{k,i-1})$$

- * Objective
 - * Attacker aims at compromising the entire network
- Select minimum set of agents to attack first
 - Find minimum dominating set of the graph
 - * NP-complete and no efficient straight-forward solution!
- * Attacker's way to approximate the solution

Algorithm	Greedy Algorithm
1: $S := \emptyset;$	
	vhite nodes do
3: choose a	$w \in \left\{ x \mid w(x) = \max_{u \in V} \{w(u)\} \right\};$
4: $S := S \cup$	$ \downarrow \{v\}; $
5: end while	e

F. Kuhn and R. Wattenhofer. **Constant-Time Distributed Dominating Set Approximation**. In Proc. of the 22 nd Annual ACM Symp. on Principles of Distributed Computing (PODC), pages 25–32, 2003. 9/6/2017

Attack Detection

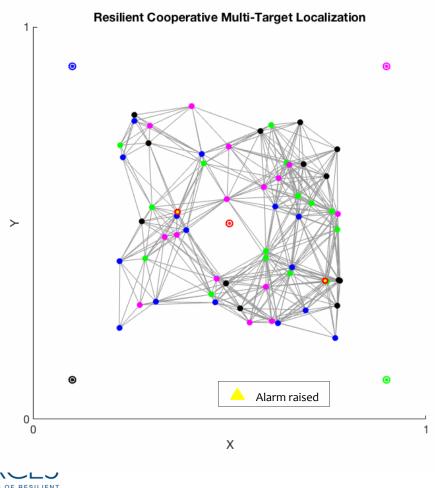

strategy

When the estimation by diffusion strategy enters steady state, check the estimation difference between the two means.

Initialization: alarm(k) = o for all k.

If the difference exceeds a certain threshold, alarm(k) = 1.

If alarm(k) = 1, agent k will not trust in the estimation by diffusion strategy.



Attack Detection

Algorithm 2 Resilient ATC diffusion strategy with adaptive combination weights

Set alarm $(k) = 0, \gamma_{lk}^2(-1) = 0$ for all k = 1, 2, ..., N and $l \in N_k$ 1: for all $k = 1, 2, ..., N, i \ge 0$ do $\boldsymbol{\psi}_{k,i} = \boldsymbol{w}_{\text{diff},k,i-1} + \mu_k \boldsymbol{u}_{k,i}^* (\boldsymbol{d}_k(i) - \boldsymbol{u}_{k,i} \boldsymbol{w}_{\text{diff},k,i-1})$ 2: $\gamma_{lk}^2(i) = (1 - \nu_k)\gamma_{lk}^2(i-1) + \nu_k \|\psi_{l,i} - w_{\text{diff},k,i-1}\|^2, l \in N_k$ 3: $a_{lk}(i) = \frac{\gamma_{lk}^{-2}(i)}{\sum_{m \in N_k} \gamma_{mk}^{-2}(i)}, l \in N_k$ 4: $\boldsymbol{w}_{\mathrm{diff},k,i} = \sum_{l \in N_k} a_{lk}(i) \boldsymbol{\psi}_{l,i}$ 5: $\boldsymbol{w}_{\mathrm{ncop},k,i} = \boldsymbol{w}_{\mathrm{ncop},k,i-1} + \mu_k \boldsymbol{u}_{k,i}^* (\boldsymbol{d}_k(i) - \boldsymbol{u}_{k,i} \boldsymbol{w}_{\mathrm{ncop},k,i-1})$ 6: / * * * * * * * * * * * detection section * * * * * * * * * * / if $\|\boldsymbol{w}_{\mathrm{diff},k,i} - \boldsymbol{w}_{\mathrm{diff},k,i-1}\| < \Delta$ 7: if $\operatorname{alarm}(k) = 0$ and $\|\boldsymbol{w}_{\operatorname{ncop},k,i} - \boldsymbol{w}_{\operatorname{diff},k,i}\| > \lambda$ 8: $\operatorname{alarm}(k) = 1$ 9: elseif $\operatorname{alarm}(k) = 1$ and $\|\boldsymbol{w}_{\operatorname{ncop},k,i} - \boldsymbol{w}_{\operatorname{diff},k,i}\| < \lambda$ 10: $\operatorname{alarm}(k) = 0$ 11: 12: end for

- * Time-varying distributed estimation case
- * Large noise variance case

Thank you!

