
System-Security Co-design
Janos Sztipanovits

David Lindecker

ISIS-Vanderbilt

Page 2

 Change modes of operation of Detection and Regulation

- Diagnosis, Response and Reconfiguration forms a supervisory control
mechanism – used in hierarchical control approaches (e.g. Pappas, Tabuada)

 Re-synthesize implementation architecture

- Provide interface for changing required security policies

- Provide models of information flows required to be implemented

- Provide models for security and performance characteristics of
communication links and computing devices

- Provide precise specification for the reconfiguration space

- Develop methods for remapping the information architecture to the
implementation architecture subject to functional, performance, timing
and security constraints

Objectives of Reconfiguration

2/22/2017

Page 3

Co-design Problem

2/22/2017

System-Security Codesign

Hierarchical Control
(distributed, resilient control dynamics)

Dynamic Information Architecture
(processing and information flows)

Deployment Platform
(platforms with dynamic performance and

security properties)

modes,
policies

risk data
performance data

dynamic
mapping

Functional

Design

Implemen-

tation Design security and
performance
properties

Page 4

System – Security Co-design

2/22/2017

 Modelica
 SL-SF

 Component Model
 Discrete Time Semantics

 Logical Time Semantics
 ESMOL/TT

 Integrity Constraints
 Confidentiality Constraints

 Discrete Event Semantics
 Transaction Level Modeling

 Security Properties
 Timing Property Modeling

Platform Architecture

Componentization

 Integrity Constraints
 Confidentiality Constraints

 SW- HW Components & Dev.
 Information flow – Channel

Deployment Synthesis

Security Policies (EI)
integrity/confidentiality
Decentralized Label Model (DLM)

Control modalities (EI)

SW Component Architecture Synthesis

Component Code

WCET
WCCT Analysis

Automatic Code Generation

Controller Dynamics

 LET
SW Timing Model

 SystemC
 Discrete Event Semantics

Implementation
Model

 LET
 WCET

 WCCT

System Timing
Model

Implemented
Dynamics

Logical Execution Time

Information Flow Model
Refinement

Platform Information
Flow Model Extraction

Page 5

 Integrity attacks
- Manipulate data (value, timestamp, source identity,..)

* Confidentiality attack
- Leak critical data to unauthorized persons/systems

Integrity and confidentiality restrictions impose constraints on
information flows.

- How to model these restrictions?

- How to integrate these restrictions with others (functional and
timing) and formulate a co-design problem?

Security Concerns Addressed

2/22/2017

Page 6

 Myers, Liskov (1997): Introduced security-typed languages by labeling
variables with information flow security policies

 New semantic concepts:
 Principles that represent authority entities.

 Labels expressing security classes encountered in most information flow
models.

 Policies that are elementary security primitives used in labels.

 Labeled entities that have attached labels, such as values, slots (variables,
objects, i/o channels). Copies of values can be relabeled, slots cannot.

 Operators that can relabel or declassify values in information flows.

* DLM provides mechanism for static/dynamic type checking of security
labels in information flows to detect policy violations.

* Example: Jif, a security-typed version of Java

Decentralized Label Model for Informaiton Flow
Control

2/22/2017

Page 7

Simple Example

2/22/2017

Airport

A
Arr./Dep.
History

Airline Data

Extr. E
Airline data

Researchers

R

Data

Analytics D

Analytics
DB

Results

(al: al,A) (R: al,R)

(R: R,D) (R: R,D)

(D: D)

Principles: {A, al, E, R, D}
Act-for: {E -> al}
Policies: (owner: readerlist)

(al: al,A)..
Labels: {(policy)1,(policy)2..}

trusted agent

()

Page 8

 Labels contain a set of policies. Each policy includes an owner and
a set of readers allowed by the owner. The effective reader set
for a label is the intersection of every reader set in it.
L = {o1: r1, r2; o2: r2, r3}

 Processing blocks running under the authority of an owner can
declassify the owner’s policy by adding readers.

Working With Security Labels

2/22/2017

Module1
(o1)

L2L1

L1 = {o1: r1, r2; o2: r2, r3} L2 = {o1: r1, r2 ,r3, ; o2: r2, r3}

Page 9

 Propagation rule-1:

Propagation Rules

2/22/2017

Module1 L1 L1 Module2L2

value

 Propagation rule-2:

inherits relabels

𝐿1 ⊑ 𝐿2

𝑜𝑤𝑛𝑒𝑟𝑠(𝐿1) ⊆ 𝑜𝑤𝑛𝑒𝑟𝑠(𝐿2)

∀𝑜 ∈ 𝑜𝑤𝑛𝑒𝑟𝑠 𝐿1 , 𝑟𝑒𝑎𝑑𝑒𝑟𝑠 𝐿1, 𝑜 ⊇ 𝑟𝑒𝑎𝑑𝑒𝑟𝑠(𝐿2, 𝑜)

Module
L1

L2

L3

L3 is the join of L1 and L2

𝐿3 = 𝐿1⨆𝐿2

𝑜𝑤𝑛𝑒𝑟𝑠 𝐿1⨆𝐿2 = 𝑜𝑤𝑛𝑒𝑟𝑠 𝐿1 ∪ 𝑜𝑤𝑛𝑒𝑟𝑠(𝐿2)

𝑟𝑒𝑎𝑑𝑒𝑟𝑠(𝐿1⨆𝐿2, 𝑜) = 𝑟𝑒𝑎𝑑𝑒𝑟𝑠 𝐿1, 𝑜 ∩ 𝑟𝑒𝑎𝑑𝑒𝑟𝑠(𝐿2, 𝑜)

(Labels form a security lattice.)

Page 10 2/22/2017

DLM in Model-Based Design

Page 11 2/22/2017

Information Flow Over SW
Component Model

Page 12

Information Flow Over SW
Component Model

Page 13

Information Flow Over
Hardware Buses

𝐿1 ⊑ 𝐿3

𝐿1

𝐿2

𝐿3

𝐿4

𝐿5

𝐿1 ⊑ 𝐿4

𝐿2 ⊑ 𝐿5

Page 14

Workflow for Designing Secure
Distributed Embedded Systems

Examples for FORMULA code
in the next talk.

