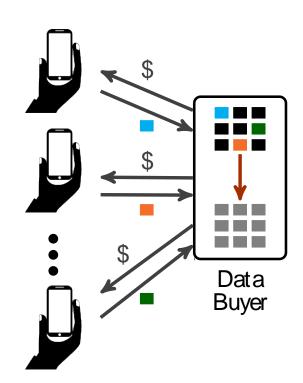
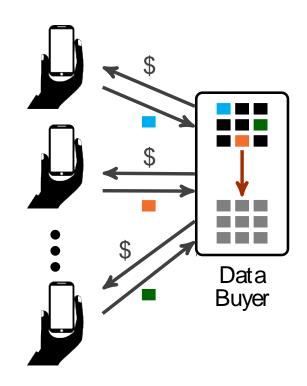


Designing Data Markets for Competitive Industries: Structure, Stability and Fairness

Tyler Westenbroek with Roy Dong, Lillian Ratliff and Shankar Sastry



Motivating Problems


- * The value of a particular data source to a firm is difficult to measure
 - Data-driven firms use different methods to process data and are looking to estimate different things
 - * A firm has no way to ascertain the 'quality' of data before purchasing it
- Data sources have incentive to misrepresent the 'quality' of the data they are providing
 - Buying data from an new source is a potentially risky transaction

Previous Work in Literature

- Previous work primarily focuses on a single data buyer
- * The buyer is interested in estimating some phenomena f(x)
- * The buyer uses the readings from the sensors to construct the estimate $\hat{f}(x)$
 - Ex: Flow of traffic on a road

Strategic Sensing Framework

- * Framework proposed in [1]:
 - * Data source i exerts effort e_i to produce an estimate of f(x) $y_i(e_i) = f(x) + \epsilon_i$, where ϵ_i is distributed with zero mean and variance $\sigma_i(e_i)^2$
 - * The buyer agrees to pay each data source i according to some pricing scheme, $p_i(x, \overrightarrow{y_i})$
 - Data source i chooses to exert effort

$$e_i^* = \arg \max_{e_i \in \mathcal{E}_i} \mathbb{E}[p_i(x, y(e_i))] - e_i$$

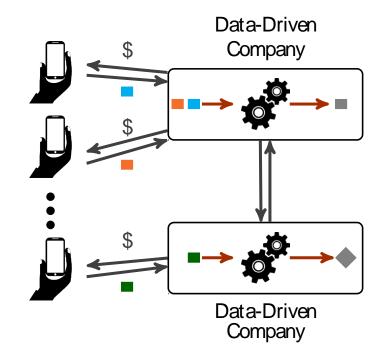
The buyer wants to pick the pricing scheme which minimizes

$$\mathbb{E}_{x^*, \vec{y}(\vec{e}^*)} \left[\left(\hat{f}_{(\vec{x}, \vec{y}(\vec{e}))}(x^*) - f(x^*) \right)^2 + \eta \sum_{i \in W'} p_i \left(\left(x_j, y_j(e_j^*) \right)_{j \in W'} \right) \right]$$

Strategic Sensing Framework (Cont.)

* In particular, [1] utilizes pricing schemes of the form

$$p_i((\vec{x}, \vec{y})) = c_i - d_i \left(y_i - \hat{f}_{(\vec{x}, \vec{y}) - i}(x_i) \right)^2$$


- * Demonstrates a method for choosing c_i and d_i that allows the buyer to
 - * Precisely set the level of effort each of the sensors exerts and
 - Exactly compensate each sensor such that

$$\mathbb{E}_{x^*,\vec{y}(\vec{e}^*)}[p_i((\vec{x},\vec{y}))] = e_i$$

Adding Competition Between Firms

- Multiple firms buy data from the same pool of data sources
- * Firms want to maximize the quality of data they receive and minimize the quality of data their competitors receive
- * The value of data ultimately arises from the competition between the firms

Two Firm Example

* Firm *j* tries to minimize:

$$\mathbb{E}\left[\left(\hat{f}_{\left(\vec{x}, \overrightarrow{y_{j}}(\vec{e})\right)}(x^{*}) - f(x^{*})\right)^{2} - \delta_{j}\left(\hat{f}_{\left(\vec{x}, y_{-j}(\vec{e})\right)}(x^{*}) - f(x^{*})\right)^{2} + \eta \sum_{i \in W'} p_{i}^{j}\left(\left(x_{j}, y_{j}(e_{j}^{*})\right)_{j \in W'}\right)\right]$$

- * Where the sensors collect data as before and report reading y_j to firm j
- * Each firm j commits to paying each data source i the payment

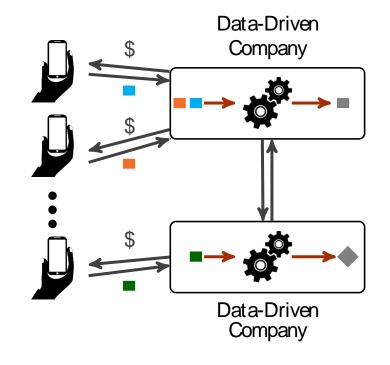
$$p_i^j((\vec{x}, \vec{y})) = c_i^j - d_i^j \left(y_i^j - \hat{f}_{(\vec{x}, \vec{y}_j) - i}(x_i) \right)^2$$

* In total, each data source receives payment

$$p_i((\vec{x}, \vec{y})) = p_i^1((\vec{x}, \vec{y})) + p_i^2((\vec{x}, \vec{y}))$$

Two Firm Example (Cont.)

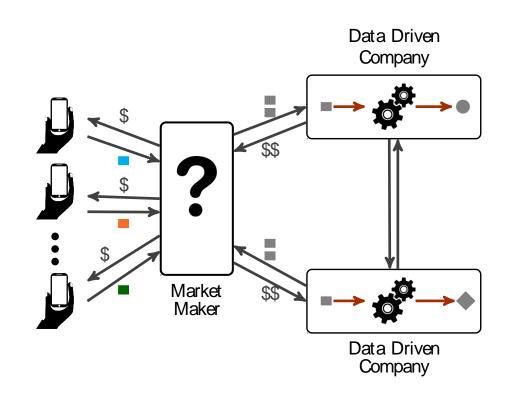
* Data source i exerts effort


$$e_i^* = \arg \max_{e_i \in \mathcal{E}_i} \mathbb{E} [p_i^1(x, y_1(e_i)) + p_i^2(x, y_2(e_i))] - e_i$$

- * For a given level of effort e_i , it is optimal for data source i to report the same reading to both firms
 - When a firm incentivizes a data source to exert more effort the firm's competitor benefits
- * We look at two cases:
 - * Symmetric Firms
 - Asymmetric Firms

New Challenges Introduced by Competition

- * If both firms use pricing schemes as in [1], the market unravels
 - Potential for free riding
 - Cannot guarantee individual rationality is maintained for all agents
 - Firms have incentive to make data sources sign exclusivity contracts



[1] Cai, Daskalakis, Papadimitriou (2015)

Future Work

- Devise richer (possibly nonlinear) pricing contracts between data sources and data buyers
 - * Decouple the incentives to give each firm high quality estimates
- * Add a third party to mediate these contracts

Thanks!

