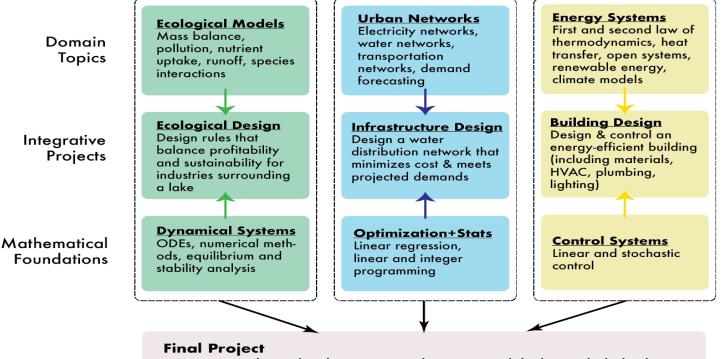


Engaging students in CPS Research

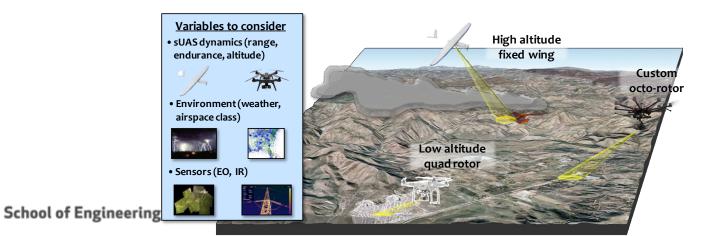
Saurabh Amin MIT

NSF All Hands Meeting, August 23-24, 2017



1. UG Teaching: Engineering Sustainability from CPS viewpoint

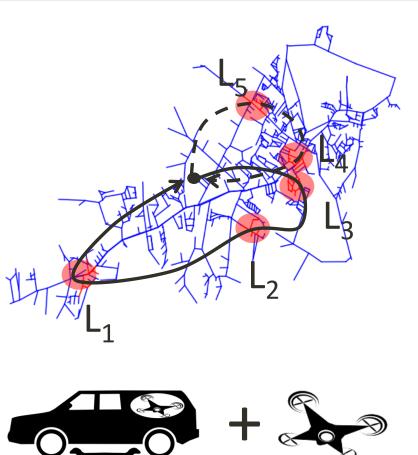
In teams, students develop integrated system models that include both natural environmental elements and human - engineered components. They must then use the model to answer some meaningful design question that balances economic, environmental, and social tradeoffs while also maintaining engineering feasibility.


Amin

2. Teaching: Capstone project

- Beaver Work capstone project with MIT CEE Department
 - Course 1.013 CEE Capstone in Spring 2017: B. Bassi and M. Goodson
 - Support: Lincoln Laboratory and Modern Technologies Solutions, Inc.
 - Graduate research; UROP projects

3


- "Unmanned Aerial System (UAS) Sensor On-Demand" capability
 - System operator: I need sensors here => UAS enable data collection
- Prototype strategic tasker given the environment, sUAS, users, & sensors
 - Integrate sUAS system with mission specific algorithms & systems
 - Intelligent mission planning cognizant of sUAS constraints

Amir

3. Spillover to research: Network monitoring under disruptions

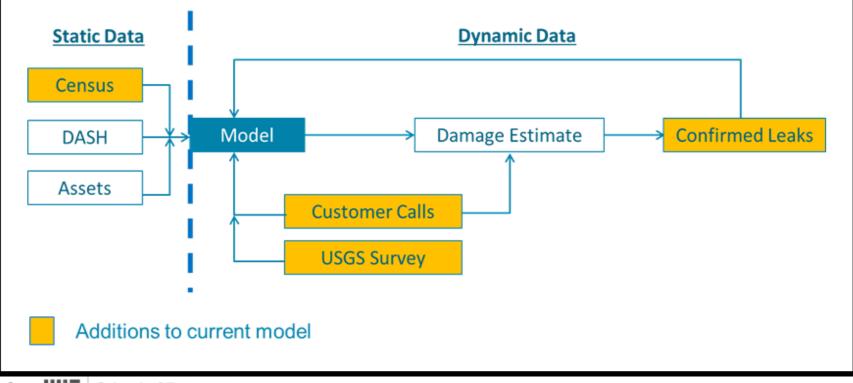
- Disparity exists between ideal monitoring and inspection and current practices for utility networks (e.g., oil and gas).
- Inefficiencies and suboptimal allocation of resources lead to increased cost from losses in the case of failure events.
- Mobile Sensing Systems with small Unmanned Aerial Systems (sUASs) is an opportunity to bridge this gap.

4. Student internships to new research

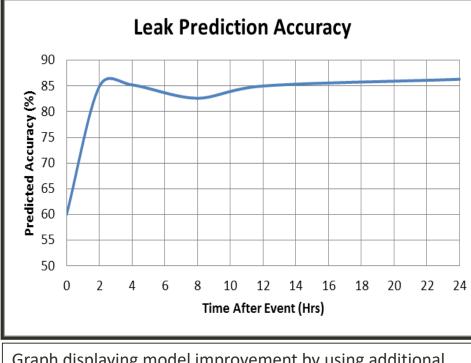
Problem: Inaccurate Earthquake Damage Prediction

1) DASH Prediction

2) DASH + Additional Variables Prediction


- **O White Circles:** DASH damage
- Orange Circles: DASH priority areas
- Green Circles: Actual leaks

Red Flags: Building damagePurple Coloring: Location of customer phone calls


Proposed Solution: Enhance Current Methodology

- Incorporate real-time data
- Account for below and above ground assets, including service lines
- Utilize machine-learning based damage prediction model

Results

- Accuracy improves by over **20% in first 2 hours**
- Output displays the total number of leaks expected per plat as a function of probability

0	2639-H08	0.469501	0.22718	0.30332	Class0
1	2639-108	0.564764	0.20957	0.225666	Class0
2	2639-J08	0.580021	0.209281	0.210698	Class0
3	2640-H01	0.544185	0.211449	0.244366	Class0
4	2640-101	0.573376	0.211761	0.214863	Class0
5	2640-J01	0.561382	0.220607	0.21801	Class0
6	2640-J02	0.54376	0.226926	0.229313	Class0
7	2708-17	0.624345	0.203368	0.172287	Class0
8	2708-18	0.582381	0.230635	0.186984	Class0
9	2708-J6	0.570355	0.212577	0.217068	Class0

Class1

Class0

Class2

Max

Graph displaying model improvement by using additional variables, updated throughout the event **7** School of Engineering

Leak Classes: Class 0 = (0) Class 1 =

Plats

Class 1 = (1-5) Class 2 = (6+)
