
Resilience Modeling and
Model-based Design for CPS

Gabor Karsai, Daniel Balasubramanian,
Abhishek Dubey, Tihamer Levendovszky,

Nag Mahadevan
Vanderbilt University/ISIS

Page 2

CPS Cloud:
A Distributed Sensor/Control Network Platform

Sensor Propulsion Actuator

Processing/Storage Network

Networked node with local
processing and storage, sensors,
actuators, and propulsion system:

Nodes for an ad-hoc network
that has 1+ ground-link and performs
a coordinated sensing/control function

The CPS Cloud is used as a Open
Sensing/Computing/Actuation Platform
where various customer applications
can run, side-by-side.

Examples:
•Swarm of UAVs performing tornado
damage surveillance
•Fleet of UUVs performing collecting
climate change data from oceans
•DARPA System F6: Fractionated
Spacecraft – A Space Global Common

Challenges:
•Networked, distributed control
•Fault-resilience
•Applications with different trust and security levels
must run side-by-side

Page 3

CPS Applications deployed on the Platform

2/22/2017

Applications
- Built from Processes

Processes
- Built from Components

Network nodes
- Host processes

Page 4

Concept Definition Notes

Node Computing node Hosts processes

Link Network link Facilitates interactions

Component Software component Unit of concurrency

Process Software process Hosts components

Application Software applications Consists of processes

Interaction Component interactions Pub/sub or service (sync/async)

Device Physical device Assigned to node

Function Functionality Decomposable with dependencies

CPS Cloud Application Platform
Architecture ‘Language’

2/22/2017

Page 5

Resilient CPS Platform Concepts

2/22/2017

Page 6

 A System Function can be allocated to various (combinations of)
providers: Applications / Processes / Components

 Processes / Components can be allocated to various
(combinations of) platform Nodes

 When a Node / Link / Process / Component fails (compromised),
functionality can be restored by an

 alternative allocation of functions to providers, or

 alternative allocation of providers to platform nodes

Why resilient?

2/22/2017

Page 7

Evaluating Architectures

 Related designs

 Common elements are captured as a seed design

 A set of…

 Variations are captured as configuration constraints

 Resilience of an architecture

 Capability of eventual recovery from loss of functionality

 Comparison: Resilience metric

 A pair of integers

1. Measures the margin of recovering capabilities in the worst case
(redundancy of the system along the most vulnerable/critical path)

2. Measures the margin of recovering capabilities in the optimistic case
(overall redundancy of the system)

Architecture: set of related designs.

Page 8

Definitions

 Component availability refers to the availability of a component for
usage at any time instant during the operation. I.e., it is deployed and
is active.

 Function availability refers to the availability of a function for
operation. For a function to be available, all the components required
for the realization of this function should be available.

 If a function can be carried out even when a component becomes
unavailable, then we can conclude that there is active redundancy in
the function with respect to that component.

 If a function can be carried out even when a component becomes
unavailable by activating/deploying another set of components or
migrating the affected component to another node, then it can be
concluded that there is deployment redundancy in the function with
respect to that component.

Page 9

 Definition 1

 The worst case resilience is defined as the least number of failures that will make
the mission infeasible.

 The best case resilience is defined as the maximum number of failures that can be
sustained while the mission remains feasible

 Definition 2

 m1: # of node disjoint paths in the reliability block diagram

 m2: # of parallel paths in the reliability block diagram

 Measure the level of active and deployment redundancy in the system

 The set of deployment constraints in the system and number of alternative
choices affect these numbers. Example of deployment constraints:

 HRImaging component requires a node with HR camera device.

 A node cannot host more than one instance of a high performance computing component.

 Organization A’s actors must never be collocated on a node with Organization B’s actors.

Resilience metric[m1, m2]

Page 10

Calculating the resilience metric

 Encode the problem as a Satisfiability Modulo Theory (SMT)
problem over integers

 SMT problems are Boolean satisfiability problems (SAT) in which
some of the binary variables are replaced by predicates over a
suitable set of non-binary variables. A predicate is basically a binary-
valued function of non-binary variables that relies on a ‘theory’.

 Use an SMT solver to calculation the solution

 Solution = valuation of variables

 We use the Z3 solver (best-of-breed from MSR)

Page 11

SMT Solver – Problem setup

Fact Description

Component (instances) Deployed software component instances that operate at
the same time. The smallest software unit that can fail. Pre-
deployed, inactive backups are not modeled as component
instances. Binary resources can be modeled as component
instances, too.

Nodes Hardware nodes that are capable of executing component
instances.

Links Interaction links between the nodes. Provided as an
adjacency matrix of the graph consisting of nodes and links
between them.

Countable component
resources

Provided as an integer matrix: ccr[i,j] means the resource
requirement of component i of resource j

Countable node resources Provided as an integer matrix: cnr[i,j] means the availability
of resource j on node i.

Actors Defines component groups. If an actor fails, all included
component fails.

Page 12

SMT Solver:
Constraint Groups

Constraints Description Examples

Component to
node constraints

Describes the conditions under
which a component can be
deployed onto a node

Collocation constraints (C1 and C2

must/cannot be deployed on the
same node); C1 must be deployed
on N1.

Component to
component
dependencies

A component’s availability is
dependent on the availability of
another component.

An image processor component
Cim needs a camera component Cc.

Interaction
constraints

In order for two components to
interact, there must be a link
between the nodes they are
deployed on.

An image processor component
Cim needs a connection to
communicate with camera
component Cc if they are deployed
on a separate node.

Function
realization

Describes the dependency
between a function and the
components it uses.

Function F1 is realized by
components C1 and C2.

Functional
decomposition

Describes the dependency
between functions.

Function F1 uses functions F2 or F4.

Page 13

SMT Solver:
Basic System Configuration Primitives

Primitive Description Examples in Python

Equals
(variable list)

Input: a list of variables;
Output: constraint set that equals all
the variables in chain

Components of the same actor must be
deployed an the same node.
act_c2n2d = [self.Equals([c2n[compIx][n]
for compIx in actor])
for n in range(self.NO_OF_NODES)
for actor in self.actors]

Enabled
(component)

Input: an index of the component in
the component instance node matrix.
Output: a Boolean expression that is
true if the component is assigned to a
node; false otherwise

C3 depends on C2.
Implies(self.Enabled(3),self.Enabled(2))

C0 depends on C1 or C2.
Implies(self.Enabled(0),Or(self.Enabled(1),
self.Enabled(2)))

Communicates
(componentA,
componentB)

Input: two components
Output: a constraints that enforces
that there is a link between the nodes
the components are deployed on. If
the two components are on the same
node the constraint is always
satisfied.

Connections to link; if C3 communicates with C2

and they are on different node, there should be
a link between the nodes.

comm = self.Communicates(3,2)

Page 14

SMT Solver:
Basic Node-Component Assignment Primitives

Primitive Description Examples in Python

CollocateComponents
(component list)

Input: a list of component
instances;
Output: an constraint that ensures
that the component instances
must be assigned to the same node

C2 collocated with C0 OR
C2 is collocated with C1.
Or(And(self.CollocateComponents([2,0])),And(s
elf.CollocateComponents([2,1])))

DistributeComponents
(component list)

Input: a list of component
instances;
Output: an constraint that ensures
that the component instances
must be assigned to different
nodes

C2 cannot be collocated with C0 AND
C2 cannot be collocated with C1.
And(And(self.DistributeComponents([2,0])),
And(self.DistributeComponents([2,1])))

Page 15

SMT Solver:
Basic Function Realization Primitives

Primitive Description Examples in Python

Implies
(function, binary
component expression)

Dependency between functions
and components: a function
requires the binary component
expression to be true.

F0 requires C2

self.solver.add(Implies(f[0], self.Enabled(2)))

ForceExactly (function,
component list, n)

Input: a function and a list of
components; a positive integer n
Output: constraints that makes
sure that exactly n of the
components in the list must be
enabled to provide the function

F0 requires exactly two of C0, C1, C2

f2c = self.ForceExactly(f[0], [0,1,2],2);
self.solver.add(f2c)

ForceAtleast
(function, component
list, n)

Input: a function and a list of
components; a positive integer n
Output: constraints that
enforces that at least n of the
components in the list must be
enabled to provide the function

F0 requires at least two of C0, C1, C2

f2c = self.ForceExactly(f[0], [0,1,2],2)
self.solver.add(f2c)

ForceAtmost
(function, component
list, n)

Input: a function and a list of
components; a positive integer n
Output: constraints that
enforces that at most n of the
components in the list must be
enabled to provide the function

F0 requires at most two of C0, C1, C2

f2c = self.ForceExactly(f[0], [0,1,2],2)
self.solver.add(f2c)

Page 16

SMT Solver:
Failure behavior primitives

Primitive Description Examples in Python

ComponentFails
(component)

Input: a component that fails
Output: None
Adds a constraint that makes sure
that the component cannot be
assigned to any node.

Component C2 failed
s= GPSConfigurationSolver()
s.ComponentFails(2)

NodeFails
(node)

Input: a node that fails
Output: None
Adds a constraint that makes sure
that the node cannot host any
component

Node N2 failed
s= GPSConfigurationSolver()
s.NodeFails(2)

ActorFails
(actor)

Input: a node that fails
Output: None
Adds a constraint that makes all the
component belonging to the actor
fail

Actor A3 failed
s= GPSConfigurationSolver()
s.ActorFails(3)

LinkFails
(n1,n2)

Input: a pair of node between which
a link fails
Output: None
Adds a constraint that makes sure
that the components assigned to the
n1 n2 cannot interact

Tle link between N3 and N4 failed
s= GPSConfigurationSolver()
s.LinkFails(3,4)

Page 17

SMT Solver:
Services / Queries

Primitive Description Examples in Python

Single deployment
configuration

Provides a single deployment
configuration that satisfies the
constraints. Possible outputs: (i) a
solution, (ii) no solution exists, (iii)
not known.

s= GPSConfigurationSolver()
s.solve()

All possible deployment
configurations

Provides all possible deployment
configuration that satisfies the
constraints. Possible outputs: (i)
solutions, (ii) no solution exists, (iii)
not known.

s= GPSConfigurationSolver()
solutions = s.get_models()

All independent
configurations

Provides all possible deployment
configuration that satisfies the
constraints and do not share any
components or nodes. Possible
outputs: (i) independent solutions,
(ii) no solution exists, (iii) not
known.

s= GPSConfigurationSolver()
solutions = s. get_independent_models()

Resilience Metrics Provides resilience metrics (a pair
of integers). If there are no
solutions it returns [0,0].

s= GPSConfigurationSolver()
[m1,m2] = s.computeMetrics()

Resilience metric calculations

An example

Page 19

Satellite Resources

 Three similar satellites
 Sat 1

 HR Camera
 LR Camera
 GPU
 Ground link

 Sat 2
 HR Camera
 GPU
 Ground link

 Sat 3
 LR Camera
 Ground Link

 All satellites have two wireless links that they can use to communicate with each
other

Page 20

Applications

 Cluster Flight Application (CFA)

 GroundInterface: An actor that provides access to the ground
station. The ground uses this actor to send commands to the
cluster.

 SatelliteBusInterface: An actor that provides access to the
satellite bus hardware

 TrajectoryPlanner: Runs the trajectory planning service. It
receives the commands from ground and then updates the orbit.

 OrbitManager: Runs the control loop. Disseminates position to
other satellites and commands the satellite thruster via the bus
interface to adjust the orbit as required.

Page 21

Applications (continued)

 Wide area imaging application

 Uses the high resolution and/or low resolution cameras different
nodes to create a combined image.

 Each satellite runs an image grabber component.

 It can provide service either through the high resolution facet or low
resolution facet or both, depending upon the hardware available on the
satellite.

 Only one instance of image processor component runs in the cluster
at any time.

 But it can be redeployed as required.

Page 22

Physical Resource Requirements

 GroundInterface requires GroundLink

 ImageGrabber

 LR_Img: LR_CAMERA (LR_img port needs LR camera)

 HR_Img: HR_CAMERA (HR_img port needs HR camera)

 ImageProcessor 1,2 requires a GPU

Page 23

CFA

 One instance of CFA runs on each node

 An application instance requires the orbit manager and
satellite bus interface from the same node.

Page 24

 All components/Application have operational requirements
 CFA Application

 SameNode(OrbitManager,SatelliteBus)

 OrbitManager
 SameNode(CallSatThrusterCtrl)
 SameNode(GetStateVector)

 TrajectoryPlanner
 Atleast(1, (SatCommand_Subscriber,ReceiveSatCommand))

 ImageGrabber
 ImageGrabber _1: Atleast(1,(HR_1,LR_1))
 ImageGrabber _2: Atleast(1,(HR_2))
 ImageGrabber _3: Atleast(1,(LR_3))

 ImageProcessor
 ImageProcessor_1: Atleast(1,GPU_1)
 ImageProcessor_2: Atleast(1,GPU_2)
 Atmost(1,(ImageProcessor_1, ImageProcessor_2, ImageProcessor_3))

Operational requirements

Page 25

Functional requirements

 Capture the functional breakdown required for the mission

 Cluster flight

 Wide area imaging

 All functions map to application/component instances

 Failure of one component/hardware resource/network link is
used to compute whether the mission function is unavailable.

 Thereafter an alternative configuration (if available) can be
chosen to recover the functionality.

Page 26

Resilience Metric and Scenarios

 Metric = [2,23]
 Assumption: all 6 functions are required
 The system is 2-fault tolerant, but can operate as many as 23 faults

Scenarios:
 Complete failure of Sat2

 ImageProcessor on Sat2 is out, another ImageProcessor on Sat1 or Sat3
should be activated.

 Failure of GPU on Sat1
 GPU is required by the Image Processor
 Therefore, a reconfiguration is required which activates image processor

on Sat3

 Failure of Ground Link on Sat 1
 No reconfiguration is required. The ground command is disseminated by

either Sat2 or Sat3 via pub/sub ports

Page 27

 Resilient architecture can be modeled as: software components
and architecture + hardware platform + functions + constraints

 A constraint solver can calculate

 The resilience metric (to compare architectures)

 Interesting fault scenarios that break the system (to increase
resilience by design)

 Novel deployments for the system (to do reconfiguration)

 Relies on:

 Robust supervisory layer / platform that manages system
reconfiguration

Summary: Resilience Modeling

2/22/2017

