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Introduction

Coupled sequential decision problems: ubiquitous in Cyber-Physical Systems (CPS):
Routing (transportation, communication), power networks.
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Figure: Sequential decision problem.
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Introduction

Coupled sequential decision problems: ubiquitous in Cyber-Physical Systems (CPS):
Routing (transportation, communication), power networks.
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Figure: Coupled sequential decision problems.
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Continuous-time dynamics

References

Design algorithms for learning and optimization in continuous-time.

Benefits

o Simple analysis.
o Provides insight into the discrete process.
o Streamlines design of new methods.

o Dynamics inspired from nature.
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Accelerated Optimization in Continuous-Time

Constrained convex optimization

minimize  f(x) (convex Vf Lipschitz)

subject to x € X (convex closed)

Gradient / Mirror descent [4] O(1/k)

Nesterov’s accelerated method [5] | O(1/k?)

[4]A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in optimization.
Wiley-Interscience series in discrete mathematics. Wiley, 1983

[5]Y. Nesterov. A method of solving a convex programming problem with convergence rate o (1/k2).
Soviet Mathematics Doklady, 27(2):372-376, 1983
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Accelerated Optimization in Continuous-Time

Constrained convex optimization

minimize  f(x) (convex Vf Lipschitz)

subject to x € X (convex closed)

Gradient / Mirror descent [4] O(1/k)

Nesterov’s accelerated method [5] | O(1/k?)

Dynamics X(t) = —=VF(X(t)) XD _ (0 = s (xR

ks(F(x®y — £r) 4 B2

2
il

Lyapunov function | E(t) := t(fF(X(t)) — £*) + 1XOTIZ

Convergence rate f(X(t) — f* =0(1/t) F(xWy — £~ = O(1/k)

[4]A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in optimization.
Wiley-Interscience series in discrete mathematics. Wiley, 1983

[5]Y. Nesterov. A method of solving a convex programming problem with convergence rate o (1/k2).
Soviet Mathematics Doklady, 27(2):372-376, 1983
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Lyapunov function

Candidate Lyapunov function parameterized by r(t)

L (t) = r(e)(F(X(2)) — ) + Dy=(Z2(t), 2")

Z € E* dual variable, z* its value at equilibrium, Dy~ Bregman divergence. If L, is a

Lyapunov function, then

FX(t) —f* <

[2]W. Krichene, A. Bayen, and P. Bartlett. Accelerated mirror descent in continuous and discrete time.
In 29th Annual Conference on Neural Information Processing Systems (NIPS), Montreal, Canada, 2015
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Accelerated Mirror Descent

Accelerated Mirror Descent ODE

Z = —n(t)VF(X),
w(r)Vy*(Z d
AMD,,., § X(t) = Sy e
Vi*(z0) = xo-

Figure: Z evolves in E*, X is a weighted
< average of the mirrored trajectory V™ (Z).

[3]W. Krichene, A. Bayen, and P. Bartlett. Adaptive averaging in accelerated descent dynamics.
In 30th Annual Conference on Neural Information Processing Systems (NIPS), in review, 2016
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Accelerated Mirror Descent

Accelerated Mirror Descent ODE

Z(1)

-7V F(X (1)

Z = —n(t)VF(X),

w(r)Vy*(Z d
AMD,, ,{  X(t) = %

V*(z0) = xo.

Figure: Z evolves in E*, X is a weighted
< average of the mirrored trajectory V™ (Z).

Convergence rate

Ifn= ""W’ and w/W > r’/r, then L, is a Lyapunov function for AMD,,, and

L,(to)
r(t)

f(X(t) - f* <

[3]W. Krichene, A. Bayen, and P. Bartlett. Adaptive averaging in accelerated descent dynamics.
In 30th Annual Conference on Neural Information Processing Systems (NIPS), in review, 2016
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Example: accelerated replicator

Accelerated replicator ODE

_ fot w(T)Z(T)dT

2 = ()2 ((2,9F(X) = Vif (X)) T R




var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}




Discretization

t: continuous time

k: discrete time

s: step size

Time correspondance: t = k4/s.

Figure: Discretization
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}
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Heuristics to speed up convergence

o Restart when no progress [6]
o Adaptive averaging [3]

Figure: Restarting and adaptive averaging

[6]B. O’Donoghue and E. Candés. Adaptive restart for accelerated gradient schemes.
Foundations of Computational Mathematics, pages 1-18, 2013

[3]W. Krichene, A. Bayen, and P. Bartlett. Adaptive averaging in accelerated descent dynamics.
In 30th Annual Conference on Neural Information Processing Systems (NIPS), in review, 2016



var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}
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Optimization in nature

Continuous-time optimization can be found in nature.

@ Physarum is shown to solve the
shortest path problem (a linear
program) [1].

@ Dynamics modeled by biologists.

@ Dynamics shown to be an
instance of gradient descent
applied to the shortest path
problem (on some Riemannian
manifold) [7].

Figure: Physarum can compute shortest paths [1]

[1]V. Beonifaci, K. Mehlhorn, and G. Varma. Physarum can compute shortest paths.

Journal of Theoretical Biology, 309:121 — 133, 2012

[7]D. Straszak and N. K. Vishnoi. On a natural dynamics for linear programming.

In Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science, ITCS '16.
ACM, 2016
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