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Introduction

Coupled sequential decision problems: ubiquitous in Cyber-Physical Systems (CPS):
Routing (transportation, communication), power networks.
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Figure: Sequential decision problem.
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Continuous-time dynamics

Design algorithms for learning and optimization in continuous-time.

Benefits

Simple analysis.

Provides insight into the discrete process.

Streamlines design of new methods.

Dynamics inspired from nature.
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Accelerated Optimization in Continuous-Time

Constrained convex optimization

minimize f (x) (convex ∇f Lipschitz)

subject to x ∈ X (convex closed)

Gradient / Mirror descent [4] O(1/k)

Nesterov’s accelerated method [5] O(1/k2)

Dynamics Ẋ (t) = −∇f (X (t)) x (k+1) − x (k) = −s∇f (x (k))

Lyapunov function E(t) := t(f (X (t))− f ?) + ‖X (t)−x?‖2
2 ks(f (x (k))− f ?) + ‖x

(k)−x?‖2
2

Convergence rate f (X (t))− f ? = O(1/t) f (x (k))− f ? = O(1/k)

[4]A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in optimization.
Wiley-Interscience series in discrete mathematics. Wiley, 1983
[5]Y. Nesterov. A method of solving a convex programming problem with convergence rate o (1/k2).
Soviet Mathematics Doklady, 27(2):372–376, 1983
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Lyapunov function

Candidate Lyapunov function parameterized by r(t)

Lr (t) = r(t)(f (X (t))− f ?) + Dψ∗ (Z(t), z?)

Z ∈ E∗ dual variable, z? its value at equilibrium, Dψ∗ Bregman divergence. If Lr is a

Lyapunov function, then

f (X (t))− f ? ≤ Lr (t)

r(t)
≤ Lr (t0)

r(t)

[2]W. Krichene, A. Bayen, and P. Bartlett. Accelerated mirror descent in continuous and discrete time.
In 29th Annual Conference on Neural Information Processing Systems (NIPS), Montreal, Canada, 2015
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Accelerated Mirror Descent

Accelerated Mirror Descent ODE

AMDw,η


Ż = −η(t)∇f (X ),

X (t) =
∫ t
0 w(τ)∇ψ∗(Z(τ))dτ∫ t

0 w(τ)dτ

∇ψ∗(z0) = x0.

E E∗X

∇ψ∗

∂ψ

Z(t)
−η(t)∇f(X(t))X(t)

∇ψ∗(Z(t))

Figure: Z evolves in E∗, X is a weighted
average of the mirrored trajectory ∇ψ∗(Z).

Convergence rate

If η = wr
W

and w/W ≥ r ′/r , then Lr is a Lyapunov function for AMDw,η and

f (X (t))− f ? ≤ Lr (t0)

r(t)

[3]W. Krichene, A. Bayen, and P. Bartlett. Adaptive averaging in accelerated descent dynamics.
In 30th Annual Conference on Neural Information Processing Systems (NIPS), in review, 2016
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Example: accelerated replicator

Accelerated replicator ODE

˙̌Zi = η(t)Ži

(〈
Ž ,∇f (X )

〉
−∇i f (X )

)
X =

∫ t
0 w(τ)Ž(τ)dτ∫ t

0 w(τ)dτ


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}
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Discretization

t: continuous time
k: discrete time
s: step size
Time correspondance: t = k

√
s.

Figure: Discretization


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}
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Heuristics to speed up convergence

Restart when no progress [6]
Adaptive averaging [3]

Figure: Restarting and adaptive averaging

[6]B. O’Donoghue and E. Candès. Adaptive restart for accelerated gradient schemes.
Foundations of Computational Mathematics, pages 1–18, 2013
[3]W. Krichene, A. Bayen, and P. Bartlett. Adaptive averaging in accelerated descent dynamics.
In 30th Annual Conference on Neural Information Processing Systems (NIPS), in review, 2016
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Optimization in nature

Continuous-time optimization can be found in nature.

Figure: Physarum can compute shortest paths [1]

Physarum is shown to solve the
shortest path problem (a linear
program) [1].

Dynamics modeled by biologists.

Dynamics shown to be an
instance of gradient descent
applied to the shortest path
problem (on some Riemannian
manifold) [7].

[1]V. Bonifaci, K. Mehlhorn, and G. Varma. Physarum can compute shortest paths.
Journal of Theoretical Biology, 309:121 – 133, 2012
[7]D. Straszak and N. K. Vishnoi. On a natural dynamics for linear programming.
In Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science, ITCS ’16.
ACM, 2016
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