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 Binary code is in various ISA

 X86, MIPS, ARM, etc.

 Problem: the current practice is to employ common open sourced 

code when building firmware; thus one vulnerability identified in 

the source code may affect millions of firmwares

 E.g., Heartbleed in OpenSSL

Firmwares of IoT devices
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 Goal: given a (newly detected) vulnerability, quickly identify 

whether it affects an existing firmware.

 Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, Dawn 

Song, Neural Network-based Graph Embedding for Cross-Platform 

Binary Code Similarity Detection, to appear in ACM CCS 2017

Vulnerability Detection
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 Problem definition:

 Given two programs:

 One is the vulnerability (e.g., compiled from pre-patched vulnerable source 
code)

 The other is a binary code

 Detect whether the two programs are similar

 Challenges:

 The ISAs of the two programs may not be the same

 Compiler and compilation options (e.g., optimization levels) may not 
be the same

 Collision-resilient hash function-based detection is far from accurate

Deep learning for vulnerability detection
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Overall workflow
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Previous approaches

• Manually designed graph-matching-based 

algorithms

• Slow

• Effectiveness is limited by graph-matching

• Feng, et al. Scalable Graph-based Bug 

Search for Firmware Images. CCS 2016.

Our approaches:

• Deep graph embedding network

• Design a neural network to 

extract the features 

automatically

• Combine Struct2vec and 

Siamese network
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Our approach: struct2vec
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Dai, et al. Discriminative Embeddings of Latent Variable Models for Structured Data. ICML 2016.
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Training: Siamese
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Visualizing the embeddings
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Serving time (per function processing time)
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Previous work: a few secs to a few mins

Now: a few milliseconds

𝟐𝟓𝟎𝟎 × to 𝟏𝟔𝟎𝟎𝟎 × faster!
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Training time
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Previous work: > 1 week

Now: < 30 mins
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Identified Vulnerabilities
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Among top 50: 42 out 

of 50 are confirmed 

vulnerabilities

Previous work: 10/50
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Message 1. Deep learning approaches can be not only more effective, 

but also more efficient in learning embedding representations for 

binary programs.

Message 2. Program analysis can be a novel application domain of 

deep learning techniques toward a more secure cyber-physical 

world.

Takeaways
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