
Neural Network-based Graph 
Embedding for Cross-Platform 

Binary Code Similarity Detection

Chang Liu

UC, Berkeley

FORCES, 2017



Page 2 9/7/2017



Page 3

 Binary code is in various ISA

 X86, MIPS, ARM, etc.

 Problem: the current practice is to employ common open sourced 

code when building firmware; thus one vulnerability identified in 

the source code may affect millions of firmwares

 E.g., Heartbleed in OpenSSL

Firmwares of IoT devices

9/7/2017



Page 4

 Goal: given a (newly detected) vulnerability, quickly identify 

whether it affects an existing firmware.

 Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, Dawn 

Song, Neural Network-based Graph Embedding for Cross-Platform 

Binary Code Similarity Detection, to appear in ACM CCS 2017

Vulnerability Detection

9/7/2017



Page 5

 Problem definition:

 Given two programs:

 One is the vulnerability (e.g., compiled from pre-patched vulnerable source 
code)

 The other is a binary code

 Detect whether the two programs are similar

 Challenges:

 The ISAs of the two programs may not be the same

 Compiler and compilation options (e.g., optimization levels) may not 
be the same

 Collision-resilient hash function-based detection is far from accurate

Deep learning for vulnerability detection

9/7/2017



Page 6

Overall workflow

9/7/2017

R
aw

 Fe
atu

re
 

E
xtractio

n
 

(d
isse

m
b

le
r)

Firmware files

Vulnerability

Code 
Graph

Code 
Graph

Embeddings

Embeddings

Cosine 
similarity

Previous approaches

• Manually designed graph-matching-based 

algorithms

• Slow

• Effectiveness is limited by graph-matching

• Feng, et al. Scalable Graph-based Bug 

Search for Firmware Images. CCS 2016.

Our approaches:

• Deep graph embedding network

• Design a neural network to 

extract the features 

automatically

• Combine Struct2vec and 

Siamese network

E
m

b
e

d
d

in
g

 
N

e
tw

o
rk



Page 7

Our approach: struct2vec

9/7/2017

𝑥1

𝑥2

𝑥3

Code Graph

Embedding 
Network 
𝝓(⋅)

𝜇

Dai, et al. Discriminative Embeddings of Latent Variable Models for Structured Data. ICML 2016.



Page 8

Training: Siamese

9/7/2017



Page 9

Visualizing the embeddings

9/7/2017



Page 10

Serving time (per function processing time)

9/7/2017

Previous work: a few secs to a few mins

Now: a few milliseconds

𝟐𝟓𝟎𝟎 × to 𝟏𝟔𝟎𝟎𝟎 × faster!



Page 11

Training time

9/7/2017

Previous work: > 1 week

Now: < 30 mins



Page 12

Identified Vulnerabilities

9/7/2017

Among top 50: 42 out 

of 50 are confirmed 

vulnerabilities

Previous work: 10/50



Page 13

Message 1. Deep learning approaches can be not only more effective, 

but also more efficient in learning embedding representations for 

binary programs.

Message 2. Program analysis can be a novel application domain of 

deep learning techniques toward a more secure cyber-physical 

world.

Takeaways

9/7/2017


