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Introduction

Motivation

A variety of GPS-based apps such as Waze now provide real-time traffic
information.

Such apps, which are set to become more widespread in the years to come,
promise to improve traffic flows or at the very least reduce congestion by
their users.

In this paper, we study the efficiency implications of one aspect of such apps
— to provide more information (about possible routes) to a subset of users.

Our approach is based on a generalization of the classic traffic flows model
of Beckmann et al. using Wardrop equilibrium.

Our approach complements the important work [Amin 15], studying welfare
implications of greater information in a strategic incomplete information
two-player game.
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Introduction

Model Outline

We study traffic flows over an arbitrary network linking a single origin and a
single destination.

Each edge represented by a cost function.
There are two types of motorists, each aware of a subset of edges –
information set (each travel through paths linking the origin-destination
pair consisting of the edges in their information set).

We characterize the constrained Wardrop equilibrium in this environment —
where each motorist chooses the lowest-cost path among those in his
information set.

Key Question: Consider an expansion of the information set of one type of
motorists (say group 2). Does this necessarily lead to reduced travel time for
this group (or overall congestion)?

Although intuitive answer yes, several examples in game theory/
informational economics indicating why this may not be the case.
For instance, Hirshleifer (1979) showed that extra information available
before entering into co-insurance arrangements may reduce welfare
because it destroys insurance opportunities.
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Introduction

Informational Braess Paradox

We relate this question to well-known Braess Paradox in traffic routing,
whereby decreasing cost functions in the network can increase travel times.

We say that there is an informational Braess paradox if providing information
about additional edges to the group of motorists increases their travel time.

note that it would not be surprising for such information to increase
the travel times of other motorists (who may see greater congestion in
the paths second group was not able to use previously).
the surprising outcome would be for the group that is becoming more
informed to experience worse outcomes.
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Introduction

Main Results

We provide a sharp characterization of network topologies that lead to
informational Braess paradox.

In particular, we show the following:

if the network is series-parallel, there cannot be informational Braess
paradox.
if the network is not series-parallel, then there exists an assignment of
latency functions which will lead to the informational Braess paradox.

We also investigate conditions on the additional information provided to the
motorists for the emergence of the informational Braess paradox.

Our result relates to the seminal paper [Milchtaich 06], which provided
characterization of network structures that can lead to Braess paradox.

Differs both in terms of substance (by considering different types of
users) and in analysis.

Our ongoing work extends these results to a network consisting of multiple
origin-destination pairs.
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Introduction

Related Literature

Our work is related to the literature on user/traffic/Wardrop equilibrium:

[Beckmann, McGuire, Winsten 56], [Dafermos and Nagurney 84]
[Roughgarden and Tardos 00], [Correa, Schulz, Stier-Moses 06]: on the
inefficiency of Wardrop equilibria over networks.
[Milchtaich 06]: on the structure of networks leading to Braess paradox.
[Acemoglu and Ozdaglar 07], [Acemoglu, Ozdaglar, Xin 08]: on
decentralized pricing as a solution to network flow inefficiencies.
[Acemoglu, Johari, Ozdaglar 09]: on the inefficiency of hybrid routing
schemes.

Most closely related is the complementary work [Amin 15], which studies the
impact of game theoretic/strategic interactions and incomplete information.

Here the focus is on an environment with “small” users that take the
level of congestion on all edges as given.
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Traffic Network with Multiple Information Types

Traffic Network With Multiple Information Types

Consider a network represented by an undirected graph together with a
single distinct pair of nodes, an origin O and a destination D.

Assume that each node and edge belongs to one path from O to D.

Suppose there are two types of motorists.

Type i motorist has a prescribed amount of traffic ri ∈ [0, 1].
Type i motorist knows a subset of edges Ei called information set of
type i .
Pi : set of paths from O to D using edges in Ei (we focus on admissible
information sets, in the sense that the resulting Pi is nonempty).

Example: Information sets: E1 = {e1, e3, e4} and E2 = {e1, e2, e4}.
These lead to P1 = {e1e3, e1e4} and P2 = {e1e4, e2e4}.

O D

e4

e3

e2

e1
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Traffic Network with Multiple Information Types

Traffic Network With Multiple Information Types

We refer to (G , E1, E2, r1, r2) as a traffic network with multiple information
types.

A feasible flow is a flow vector (f (1), f (2)) such that for i = 1, 2:

f (i) : Pi → R+,∑
p∈Pi

f (i)(p) = ri .

We assign to each edge e ∈ E a cost function ce : R+ → R+ that is
nonnegative, nondecreasing, and continuous.
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Constrained Wardrop Equilibrium

Constrained Wardrop Equilibrium

The total flow on each edge e ∈ E is fe =
∑

e∈p f (1)(p) + f (2)(p).

The cost of a path p for a given flow vector (f (1), f (2)) is

cp(f (1), f (2)) =
∑
e∈p

ce(fe).

Definition (Constrained Wardrop Equilibrium (CWE))

Consider a traffic network with multiple information types (G , E1, E2, r1, r2) and
an assignment of cost functions {ce}. A flow vector (f (1), f (2)) is a constrained
Wardrop equilibrium if

(f (1), f (2)) is feasible.

All of the paths used by type i have minimal cost, i.e.,

p, p̂ ∈ Pi with f (i)(p) > 0, then cp(f (1), f (2)) ≤ cp̂(f (1), f (2)).

Equilibrium Cost of type i denoted by c(i)(f (1), f (2)): cp(f (1), f (2)) for
p ∈ Pi such that f (i)(p) > 0.
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Constrained Wardrop Equilibrium

Constrained Wardrop Equilibrium

Example: E1 = {e1, e3, e4}, E2 = {e2, e4}, r1 = r , r2 = 1− r , for r ∈ (0, 1).

There are two cases:

r ≤ 1
2 :

f (1)(e1e3) = r , and f (2)(e2e4) = 1 − r .
Equilibrium costs: c (1) = 3r + 2, c (2) = 5 − 3r .

r > 1
2 :

f (1)(e1e3) = 1
2
, f (1)(e1e4) = r − 1

2
, and f (2)(e2e4) = 1 − r .

Equilibrium costs: c (1) = 2r + 5
2
, c (2) = 9

2
− 2r .

O D

ce4(x) = x+ 2

ce3(x) = x+ 2

ce2(x) = 2x

ce1(x) = 2x
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Characterization of Constrained Wardrop Equilibrium

Potential Function of CWE

Proposition

A feasible flow (f (1), f (2)) is a constrained Wardrop equilibrium if and only if it is
a solution to

min
∑
e∈E

∫ fe

0

ce(z)dz

fe =
∑
e∈p

f (1)
p + f (2)

p ,

∑
p∈Pi

f (i)
p = ri , and f (i)

p ≥ 0 for all p ∈ Pi .

We call Φ ,
∑

e∈E

∫ fe
0

ce(z)dz the potential function.

Proof: Since the objective function is convex, first order condition of the
Lagrangian characterizes the solution. FOC coincides with the definition of
CWE.
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Characterization of Constrained Wardrop Equilibrium

Existence and Uniqueness of CWE

Theorem

Consider a traffic network with multiple information types (G , E1, E2, r1, r2) and
an assignment of cost functions {ce}.

(Existence)There exists a constrained Wardrop equilibrium (f (1), f (2)).

(Essential Uniqueness) If (f (1), f (2)) and (f̃ 1, f̃ 2) are both constrained
Wardrop equilibria, then ce(fe) = ce(f̃e) for every edge e ∈ E .

Proof: Using Extreme Value Theorem of Weierstrass, the potential function
Φ attains its minimum, showing the existence of CWE.
Let (f (1), f (2)) and (f̃ 1, f̃ 2) be two equilibria. By convexity

Φ(α(f (1), f (2)) + (1− α)(f̃ 1, f̃ 2)) ≤ αΦ(f (1), f (2)) + (1− α)Φ(f̃ 1, f̃ 2),

for every α ∈ [0, 1]. Since Φ(f (1), f (2)) and Φ(f̃ 1, f̃ 2) are both global minima

of Φ, the functions
∫ fe

0
ce(z)dz for any e ∈ E must be linear between values

of fe and f̃e . This shows that all cost functions ce are constant between fe
and f̃e .
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Informational Braess’s Paradox

Impact of Extra Information on Equilibrium Cost

Key Question: Does expansion of information sets lead to improved
equilibrium costs?

Related questions in literature:

Effect of decreasing cost functions on equilibrium cost (with only one
type of motorist).
Braess paradox: Equilibrium cost increases by decreasing cost funcs.
Braess paradox occurs in a Wheatstone graph [Braess 68, Arnott,
Small 94].

O D
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Informational Braess’s Paradox

Informational Braess Paradox (IBP)

Intuitively, more information should help the motorists.

Consider a traffic network with multiple information types (G , E1, E2, r1, r2)
and an assignment of cost functions {ce}.
Suppose we provide extra information to type two motorists leading to
information set Ẽ2 with E2 ⊂ Ẽ2.

Denote the equilibrium cost of type 2 motorists under the two information
structures by c(2)(f (1), f (2)) and c(2)(f̃ (1), f̃ (2))

We say that Informational Braess paradox (IBP) occurs in G if the
equilibrium cost of type two motorists increases after adding information,
i.e.,

c(2)(f̃ (1), f̃ (2)) > c(2)(f (1), f (2)).
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Informational Braess’s Paradox

Informational Braess Paradox (IBP)

Example: Consider Wheatstone graph with r1 = r and r2 = 1− r , r ∈ (0, 1)
and the following cost functions:

O D

1 + x

1 + x

1 + x

4 + 1
2x

4 + 1
2x

e3

e4

e1

e2

e5

E1 = {e1, e2, e3, e4, e5}, E2 = {e1, e2, e3, e4}.
CWE: f (1)(e1e5e4) = r and f (2)(e1e3) = f (2)(e2e4) = 1

2 (1− r).

Equilibrium costs: c(1) = 4 + 2r and c(2) = 23
4 + 1

4 r

E1 = {e1, e2, e3, e4, e5}, Ẽ2 = {e1, e2, e3, e4, e5}.
CWE: f̃ (1)(e1e5e4) = r and f̃ (2)(e1e5e4) = (1− r).
Equilibrium costs: c̃(1) = c̃(2) = 6.

IBP occurs: cost of both types has increased after providing extra
information to type two, i.e., c̃(i) > c(i) for i = 1, 2.
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Informational Braess’s Paradox

Series-Parallel Graphs

Which network topologies lead to informational Braess paradox?

Two networks G and G ′ with the same OD pair (but no other common
nodes or edges) can be connected in parallel.

Two networks G and G ′ with a single common node (destination in G and
origin in G ′) can be connected in series.

Definition: We say that a graph G is Series-Parallel if:

(i) It only has a single edge.

(ii) It is the result of attaching two series-parallel graphs in series.

(iii) It is the result of attaching two series-parallel graphs in parallel.

O D
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Informational Braess’s Paradox

Characterization of Series-Parallel Graphs

We say that a network G ′ is embedded in a network G if G is derived from
G ′ by applying the following operations (any number of times in any order):

(i) Dividing an existing edge by replacing it with two edges with a single
common end node.

(ii) Adding one edge between two nodes.
(iii) Extending origin or destination by one edge.

O D OO D

(i)

O D

(ii)

D

(iii)

Proposition (Duffin, 65)

A graph G is series-parallel if and only if the Wheatstone graph is not embedded
in G .
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Informational Braess’s Paradox

Network Topology and IBP

Theorem

Consider a traffic network with multiple information types (G , E1, E2, r1, r2) and
assume E1 = E . Informational Braess paradox does not occur in G if and only if
G is series-parallel. More precisely:

if G is not series parallel, then there exist information sets E1, E2, Ẽ2, and an
assignment of cost functions for which informational Braess’s paradox
occurs.

if G is series-parallel, then for any assignment of information sets E1, E2, Ẽ2,
and for any assignment of cost functions, informational Braess paradox does
not occur.

Remarks:

The assumption E1 = E can be relaxed to E1 ⊃ Ẽ2.

We conjecture that the second statement holds under the weaker
assumption that the subgraph of G induced by E1 ∪ Ẽ2 is series-parallel.
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Informational Braess’s Paradox

Proof Sketch

Suppose G is not series parallel.

It follows from Duffin’s characterization that Wheatstone graph G ′ is
embedded in G .
Assign cost functions of the example to G ′.
Construct G from G ′ using 3 operations:

When dividing an edge: assign half of its cost to each of the new edges
(add these edges to an information set if the original edge was in it).
When adding an edge: assign infinity cost.
When extending origin or destination, assign cost function ce(x) = x
(add this edge to all information sets).

O D OO D O D D

2x
xx

∞ x ∞
x xxx

(iii)(ii)(i)

Prove the other direction by induction on the number of edges and using the
recursive definition of a series-parallel graph.
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Conclusions

Conclusions and Ongoing Work

We presented a novel framework to study the effect of extra information on
the equilibrium cost in traffic networks.

We introduced constrained Wardrop equilibrium and informational
Braess paradox.
We showed informational Braess paradox does not occur in graph G if
and only if the graph is series-parallel.

Ongoing and Future Work:

Conditions on additional information for occurrence of IBP.
Extension to multiple OD pairs.
Extension to multiple (more than two) types.
Characterizing price of anarchy for constrained Wardrop equilibrium.
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