
Attack Surface Analysis

and Program Hardening

of CPS Systems
Chao Zhang, Mathias Payer, Dawn Song

UC Berkeley

1

MercedesTESLA

Vulnerable CPS Systems

2

More Attacks
(traffic lights, navigation routes, signs, …)

Overview

• Motivation

• Attack Surface Analysis of the Transportation CPS

• Program Hardening of CPS

 Without source code: CCFIR

 With source code: CPI

Case Study: Intelligent

Transportation System

5

Threat Model
• Access Level

 Physical access attacks

o low cost, low control

o easy to launch

 Locality access attacks

o medium cost, medium
control

o previous case study

 Remote access attacks

o medium cost, high
control

• Vulnerable Components

 Sensors (loop detectors)

 Actuators (ramp metering)

 Local controllers (2070 boxes)

 command center

o operators

o IT infrastructure

 navigation device

 vehicle

Attack Surface Analysis:

Physical Access

• Possible attacks

 copper theft (wires)

 replace a single sensor/actuator/control box

 replace a set of sensors/actuators/control boxes

 implant malicious device into vehicles

o http://www.benzinsider.com/2014/02/can-a-mercedes-car-be-hacked/

 malicious operators

o http://latimesblogs.latimes.com/lanow/2009/12/engineers-who-hacked-in-la-traffic-signal-computers-jamming-traffic-sentenced.html

7

• Vulnerable Components

 Sensors (loop detectors)

 Actuators (ramp metering)

 Local controllers (2070 boxes)

 command center

 navigation device

 vehicle

http://www.benzinsider.com/2014/02/can-a-mercedes-car-be-hacked/
http://latimesblogs.latimes.com/lanow/2009/12/engineers-who-hacked-in-la-traffic-signal-computers-jamming-traffic-sentenced.html

Attack Surface Analysis:

Locality Access

• Possible attacks:

 monitor communication data

 spoof communication data
o http://www.wired.com/2014/04/traffic-lights-hacking/

 attack software running on sensors/actuators/controllers

8

• Vulnerable Components

 Sensors (loop detectors)

 Actuators (ramp metering)

 Local controllers (2070 boxes)

 command center

 navigation device

 vehicle

http://www.wired.com/2014/04/traffic-lights-hacking/

Attack Surface Analysis:

Remote Access

• Possible attacks

 attack software in the control center
o http://www.wwaytv3.com/2014/05/31/fbi-investigating-hacked-ncdot-digital-road-signs

 attack navigation software
o http://www.wired.co.uk/news/archive/2014-03/25/waze-hacked-fake-traffic-jam

 attack intelligent vehicles’ software
o http://www.wantchinatimes.com/news-subclass-cnt.aspx?id=20141026000071&cid=1103

9

• Vulnerable Components

 Sensors (loop detectors)

 Actuators (ramp metering)

 Local controllers (2070 boxes)

 command center

 navigation device

 vehicle

http://www.wwaytv3.com/2014/05/31/fbi-investigating-hacked-ncdot-digital-road-signs
http://www.wired.co.uk/news/archive/2014-03/25/waze-hacked-fake-traffic-jam
http://www.wantchinatimes.com/news-subclass-cnt.aspx?id=20141026000071&cid=1103

Proof-of-Concept Attacks

• Congestion-on-demand attack

 create congestion patterns of a specific nature

• Catch-me-if-you-can attack

 create a VIP-lane to get through

• work in cooperation with Prof. Alexander Bayen

10

Congestion-on-demand

11

Object of the attack: a Cal logo (space-time diagram)

Security Challenge

12

• Software inevitably have vulnerabilities.

• Limited resources in CPS.

How to protect them from being exploited?

Overview

• Motivation

• Attack Surface Analysis of the Transportation CPS

• Program Hardening of CPS

 Without source code: CCFIR

 With source code: CPI

Program Hardening

• Fix vulnerabilities

• Deploy security checks

Our solutions

15

Know your enemy first.

Sun Tzu

To select a security policy and enforce it,

0

30

60

90

120

150

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Acrobat Firefox IE OS X Linux Average

n
u

m
b

e
r

o
f

V
u

ln
e
ra

b
il

it
ie

s

Top Vulnerabilities in CVE

(Control-Flow Hijack)

year

Memory

int buf[100];

int *q = buf + input;

*q = input2;

…

(*func_ptr)();
func_ptr

Control-Flow Hijack Attack

shell

code

It started 50 years ago…

buf
q

execute arbitrary cod

e!

Security Policy

int *q = buf + input;

*q = input2;

…

(*func_ptr)();

Control-flow hijack

Control-flow integrity

The control-flow target

should be legitimate.

Code Pointer integrity

The control-flow target

cannot be tampered.

Our solutions

20

Overview

• Motivation

• Attack Surface Analysis of the Transportation CPS

• Program Hardening of CPS

 Without source code: CCFIR

 With source code: CPI

CCFIR’s policy

int *q = buf + input;

*q = input2;

…

(*func_ptr)();

int *q = buf + input;

*q = input2;

…

if func_ptr ∈ Springboard:

original hardened

Springboard:

a special memory region instrumented by CCFIR,

cannot be modified by attckers

(*func_ptr)();

CCFIR: Practical Control Flow Integrity & Randomization for Binary Executables

Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szekeres, Stephen McCamant, Dawn Song, Wei Zou.
IEEE Security & Privacy 2013

Architecture of CCFIR

• Understand the binary program

 disassembly

 a novel algorithm

23

Architecture of CCFIR

• Understand the binary program

• Rewrite the binary program

 move all legitimate control-flow targets to Springboard

 check all control-flow instructions’ target at runtime

24

int *q = buf + input;

*q = input2;

…

(*func_ptr)();

if func_ptr ∈ Springboard:

How good is CCFIR?

• Time to harden binary programs

 SPECint2000 & SPECfp2000, 10s seconds

• Runtime Overhead

 SPECint2000, average 3.6%, max 8.6%

 SPECfp2000, average 0.59%, max 3.98%

25

How good is CCFIR?

• Defeat real world exploits

26

Overview

• Motivation

• Attack Surface Analysis of the Transportation CPS

• Program Hardening of CPS

 Without source code: CCFIR

 With source code: CPI

MEMORY

Swift …

Sample Python program

(Dropbox SDK example):

Python program 3 KLOC of Python

Python runtime 500 KLOC of C

libc 2500 KLOC of C

MEMORY

Swift …

C/C++ Overhead

SoftBound+CETS 116%

CCured
(language modifications)

56%

Watchdog
(hardware modifications)

29%

AddressSanitizer
(approximate)

73%

Code Pointer Integrity

• Separate sensitive pointers and regular data

Sensitive pointers =

code pointers + indirect pointers to sensitive pointers

• Enforce sensitive pointers accesses to be safe

Separation + runtime checks

• Keep regular data accesses intact (fast)

Instruction-level safe region isolation

Code Pointer Integrity

Volodymyr Kuznetsov, László Szekeres, Mathias Payer,

George Candea, R. Sekar, Dawn Song

OSDI’2014

Guaranteed Protection (CPI):

Memory Layout

Safe memory
(sensitive pointers and metadata)

Regular memory
(non-sensitive data)

Accesses

are fast

Accesses

are safe

Safe Heap Regular Heap

Code (Read-Only)

Safe

Stack
(thread1)

Safe

Stack
(thread2) …

Regular

Stack
(thread1)

Regular

Stack
(thread2) …

Instruction-level isolation

How secure is it?

• RIPE¹ defense evaluation benchmark:

 CPI prevents all attacks from RIPE

• Future attacks:

 Formal proof of CPI correctness in the paper

¹Wilander at al., ACSAC 2011

How practical is it?

cc -fcpi foo.c

• LLVM-based prototype at http://levee.epfl.ch

• Plan to integrate upstream into LLVM

http://levee.epfl.ch

• Recompiled the entire FreeBSD userspace…

• … and more than 100 packages

Full OS Distribution

PostgreSQL

OpenSSL

hardened

Performance overhead on Phoronix

-5% 5% 15% 25% 35% 45% 55% 65% 75%

pgbench

openssl

encode-mp3

graphics-magick 1

graphics-magick 2

graphics-magick 3

graphics-magick 4

graphics-magick 5

hmmer

postmark

sqlite

pybench

dcraw

crafty

compress-lzma

compress-pbzip2

c-ray

Average

Median

Safe stack only

CPI-lite (practical protection)

CPI (guaranteed protection)

Safe stack: 0.01%

CPI-lite: 0.5%

CPI: 10.5%

Code-Pointer Integrity

and
Control-flow hijack protection Unmodified C/C++

Practical protection 0.5 - 1.9% overhead

Guaranteed protection 8.4 - 10.5% overhead

Key insight: memory safety for code pointers only

http://levee.epfl.ch
hardened PostgreSQL

OpenSSL

Apache

http://levee.epfl.ch

Ongoing Work
• Deploy program hardening to real-world CPS system

 CCFIR

 CPI

• Find other potential attacks against CPS system

Conclusion

• CPS systems are vulnerable

 Case study: transportation system attacks [in collaboration

with Prof. Bayen]

• Program hardening is necessary and effective to

protect CPS systems.

• Two new solutions to automatically harden programs.

 with or without program source code

 low overhead, full system protection

39

Thanks!

40

