

RC+EI for Electricity CPS:

Pooling markets, Demand management, Security analysis Saurabh Amin (MIT)

Galina Schwartz (UC Berkeley) Demosthenis Teneketzis (U of Michigan)

Joint with M. Rasouli (U of Michigan) and D. Shelar (MIT)

Main questions

- * How to incentivize residential consumers to partly shift/reduce demand? [Schwartz, Amin]
- * How to improve market outcomes for electricity pooling markers in the presence of strategic producers with private information? [*Teneketzis, Rasouli*]
- * What are the incentives for theft? How to improve security investments in a regulated environment? [Amin, Schwartz]
- How to assess vulnerability of smart distribution networks and design defender (control) strategies in the face of attacks?
 [Amin, Shelar]

Project 1: Demand management

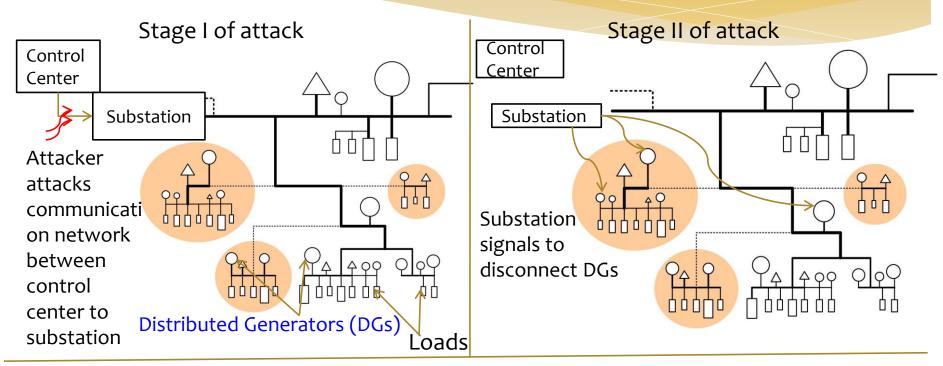
- * Reward-based demand response for electricity distribution
 - * Question: How to incentivize consumers to partly shift/reduce demand?
 - Researchers: G. Schwartz (Berkeley), S. Amin (MIT), H. Tembine (Supélec), S. Sastry (Berkeley)

Contribution: Reward-based demand response mechanism

- Ideas from economics of public good provisioning
- * Incentive mechanism: Randomized reward (lottery):
 - * user participation is voluntary
 - expected reward of a participating user is proportional to his contribution to the total public good (total shifted demand)
 - users and utility share risks of demand variability (in contrast to real time pricing where risk of demand fluctuations is shifted to users)
 - * each user bears risk when it is the cheapest for him
 - both consumers and distribution utility are strictly better off using / employing the incentive mechanism

Project 2: Security against theft

- * Theft and security in electricity distribution
 - * Question: What are the incentives for electricity theft / insecurities under regulatory constraints?
 - * Researchers: S. Amin, G. Schwartz, A. Cardenas (UT Dallas)

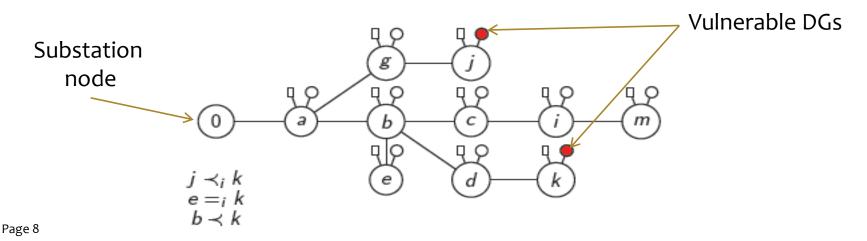

A man stands on a stepladder to fix tangled overhead electric power cables at a residential area in Nolda, India, CVBERJune 1, 2011 (Parivartan Sharma/Courtesy Reuters).

Contribution: Motoring and enforcement policies for theft management

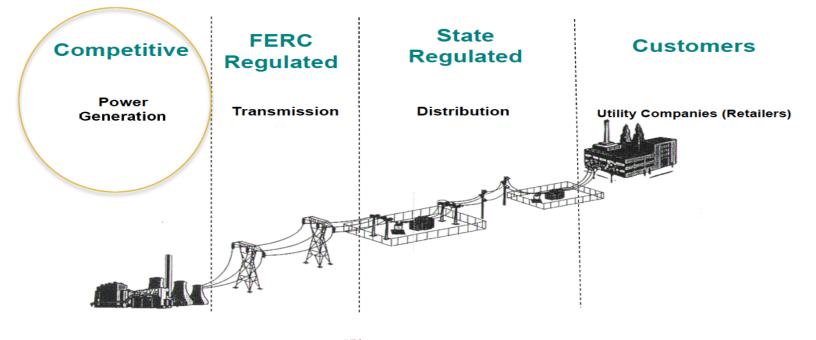
- Ideas from detection theory and incentive regulation
- Persistent electricity theft in some jurisdictions, but not others. This is the first game theoretic analysis so far!
- Findings:
 - For certain regulatory regimes, electricity distributors make sub-optimal investment in monitoring
 - User steals less when (i) fines are higher (ii) detection probability is higher
 - Distributor invests more in monitoring when (i) costs of monitoring lower (ii) user stealing higher

Project 3: Vulnerability analysis

Researchers: D. Shelar and S. Amin (joint with EPRI researchers) **Approach**:


i) Model attacker's objectives of load-shedding, equipment damage.

ii) Compute worst-case attack plans and determine optimal response.


Contribution: Optimal Interdiction plans

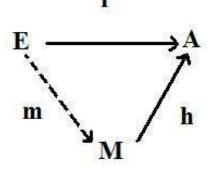
- Optimal interdiction plans under power control and, if needed, partial load/demand shedding strategies of defender depend on relative locations of DGs on the network
- * For a tree network with const. loads & homogenous DGs, attacker will prefer to disrupt *downstream* DGs over upstream.
- Extension to dynamic loads and nonhomogeneous DGs
- * Example: DG disruption at node *k* will have larger effect on voltage at node *i* (in comparison to disruption at node *j*).

Project 4: Electricity pooling markets

- Market mechanism for electricity pooling markets
- With strategic producers possessing asymmetric information
- * Researchers: M. Rasouli and D. Teneketzis (U of Michigan)

Main features

- Technical features
 - Largely non-storable commodity
 - * Interconnected flows
 - * Physical line limits
- * Market features
 - Demand with low price elasticity
 - * Supply limited by generators' capacity
- * Pooling market: Independent System Operator (ISO), a nonprofit entity, running the market


Current market: Supply function model

- * Producers bid price-production curves to the ISO
- * ISO runs uniform /discriminatory price auction; clears the market
 - * Example: California ISO, MISO, PJM, British Markets
- * Challenges: Producers may manipulate the market because of
 - 1. their strategic behavior
 - 2. private information: production cost function
 - 3. => markets power due to oligopolistic nature of industry and technical/market features mentioned before
 - * Example: 2000 California electricity crisis

Contribution: Novel market mechanism

 Mechanism for electricity pooling market that implements the optimal social welfare correspondence in Nash equilibrium.

- * The mechanism is
 - price efficient (price at equilibrium is marginal cost of production),
 - individually rational,
 - budget balanced.
- * Every producer reports one price and one production value.

Producer's model

- Strategic and self-profit maximizers
- * Fixed generation capacity x_i > 0, i = 1,2,...N [common knowledge]
- * Private production cost function $C_i(e_i)$, i = 1,2,...N, where $C_i(0)=0$, $C'_i(e_i)>0$, $C''_i(e_i)>0$.
- * Producer *i*'s utility function:

$$u_i(e_i,t_i) = -Ci(e_i) + t_i$$

for e_i the energy produced by *i* and t_i the amount of money producer *i* receives for the energy he produces

Demand model

- * Elastic [inelastic demand presented by M. Rasouli in Young Researcher Talk]
- Aggregate demand with utility u_d (D), the benefit of the consumers' society from
- consuming energy D, as common knowledge,
 u_d(0)=0, u'_d(D)>0, u''_d(D)<0
- * The consumers' total utility:

 $u_d(D)$ - Σt_i

Centralized problem

* Centralized problem for elastic demand

$$\max_{\substack{e_i, i \in I}} u_D(\sum_{i \in I} e_i) - \sum_{i \in I} C_i(e_i)$$

s.t. $0 \le e_i \le x_i$

- Convex problem with unique solution
- * Corner solution, $e_i^* = 0$ for all *i* is possible (e.g., expensive production)

Mechanism for elastic demand

Message space

$$\mathcal{M}_i := [0, x_i] \times \mathcal{R}_+, m_i = (\hat{e}_i, p_i)$$

Allocation Space

$$\mathcal{A}_i := [0, x_i] \times \mathcal{R}, a_i = (e_i, t_i)$$

• Outcome function $h: \mathcal{M} \to \mathcal{A}$

$$h(m) = (e, t) = (e_1, ..., e_N, t_1, ..., t_N)$$

 $t_i = t_{i,1} + t_{i,2} + t_{i,3}.$ paid by the demand to producer i

collected by ISO from producers to align individual incentives with social welfare

distributed among producers by ISO to achieve budget balance among producers

Our mechanism vs supply function market

- In proposed mechanism, producers send only one point of their supply function (ê_i, p_i)
- * At equilibrium, the proposed price will be the same across producers, *p* and is truthfully reported, i.e.,

$$p^* = C'_i(\hat{e}^*_i)$$
 if $0 \le \hat{e}^*_i \le x_i$

 Proposed mechanism induces the optimal social welfare in NE, while the SFM does not necessarily.

At equilibrium

- * EXISTENCE OF NE The game induced by the mechanism has at least one and at most two NE.
- * TRIVIAL NE There is always a Nash equilibrium with m^{*}_i = (0, 0), for all *i*, that is, no production and no payment.
- * NE IMPLEMENTATION The second NE exists *iff* the centralized problem has interior solution; for this NE, the dispatch of electricity will correspond to the centralized solution.
- PARETO DOMINANCE In case of two NE, the non-trivial NE Pareto dominates the trivial NE.

Properties of mechanism

- * The game induced by the mechanism is
 - * individually rational
 - * budget balance
 - * implements socially optimal outcome in NE
 - * price efficient

$$p_{i}^{*} = p_{i+1}^{*} = p^{*}$$

$$p^{*} = u'(\sum_{i \in I} e_{i}^{*})$$

$$t_{i}^{*} = p^{*}e_{i}^{*}$$

$$\frac{\partial t_{i}}{\partial e_{i}}|_{m^{*}} = p^{*}.$$

Concluding remarks on Project 4

Mechanism overview

- * Pooling market with N strategic producers and 1 non-strategic demand.
- * Producers are strategic with private information and exercise market power
- We designed a mechanism that implements optimal social welfare under Nash equilibrium concept.
- * The mechanism is individually rational, price efficient and budget balance.
- * Every producer report's one price and one production value.
- * Price at equilibrium is marginal cost of production.
- Implementation of the mechanism
 - * Implementation of the mechanism requires iterative exchange of messages
 - * We have adopted mass-action interpretation of NE, for which the tâtonnement process, m, of message exchange to converge to equilibrium is unknown.

