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Effect of human behavior on engineered systems
use incentives to induce changes in behavior

Econometrics: Measure effect of “treatments”’
(policy changes, incentive schemes, etc.)

ideally: randomized controlled trial
between-group vs. within-subject experiment design

Availability of massive amounts of data
detailed, high fregency, from various sources
typically not experimental, but observational

Goal: combine tools from Machine Learning and
Econometrics to analyze behavior of individuals
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+ Customers receive incentives to reduce their power consumption during
Demand Response (DR) events

* How to quantify the demand reduction?
“ Baselining is typically used to estimate counterfactual consumption
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+ meaningful for customers that exhibit consistent consumption
* but: user consumption may still be predictable
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 Estimated demand reductions are very noisy. How to make sense of them?
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@ ohmconnect

* Founded August 2013, launched February 2014
* Only third-party residential Demand Response Provider in California

Data for each user in initial data set of 500 users:

“ smart meter data (15min / hourly)

« “#OhmHour” DR messages (time stamped)

« approx. location (ZIP code)

+ weather data (outside temperature, humidity, wind chill, etc.)

“ web site page views and social media posts (daily aggregate)

+ number of automated devices (e.g. EVs, smart thermostats)

+ indoor temperature and temperature setpoint (for some users)
«  electricity tariff

Page 5 2/28/2017



Clean data Split data into non-DR and Train Machine Learning
s remove outliers DR components algorithms on non-DR data

s

Perform non-parametric Predict counterfactual
hypothesis test consumption during DR

Obtain estimate A and non-
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* Results based on 321 users for which sufficient trainig data is available
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y / Ypr :vectors of realized consumption readings during non-DR [ DR events
¥ / ¥pr :vectors of predicted counterfactuals during non-DR / DR events

* Assumption: The location parameters of distributions of 1y
5;DR~F and yDRNG differ by A, i.e. G(x) = F(x + A)
* Null Hypothesis: A= 0

First-differences (FD) specification:

+ compare paired samples (Jpr, Ypr) Using a singed rank test
+ estimate median of the difference between a sample from y,r and a sample from ypp

Difference-in-differences (DID) specification:

* compare prediction errors e =y —y and epgr = Ypp — Ypr UsSIiNg a rank sum test
+ estimate median of the difference between a sample from e and a sample from epp
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Users

Confidence Intervals for reduction A of consumption during DR events (SVR prediction)
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Users

Confidence Intervals for reduction A of consumption during DR events (SVR prediction)
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Users

Confidence Intervals for reduction A of consumption during DR events (L2 prediction)
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« Effect of prediction method on the test’s power:

# users null rejected:
DiD, SVR
81 S)a; 39

85%
90% 63 70 27
95% 42 47 14

* Potential issue: Endogeneity in choosing the DR events

+ Where are the automated users?

85% 16.0 16.0
90% 1.1 14.3
95% 9.5 14.9
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Conclusion

+ Combining Machine Learning and non-parametric statistics provides
powerful econometric tools for user-level analysis

+ allows to estimate user engagement based on observational data only

+ Additional care must be taken in handling potential pitfalls arising from
generic Machine Learning algorithms (biased estimators, overfitting, etc.)

Future Work

* Analyze and correct for various potential biases in the methodology:
+ self-selection bias, endogeneity of DR events, omitted variable bias, etc.
+ validate results against randomized field experiment

+ Perform analysis on larger data set with more DR events per user

* Predict users engagement based on additional high-level data on users
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