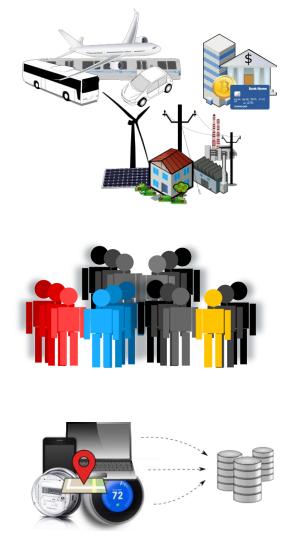


Quantifying User Engagement in Residential Demand Response Programs

Maximilian Balandat, Datong Zhou and Claire Tomlin

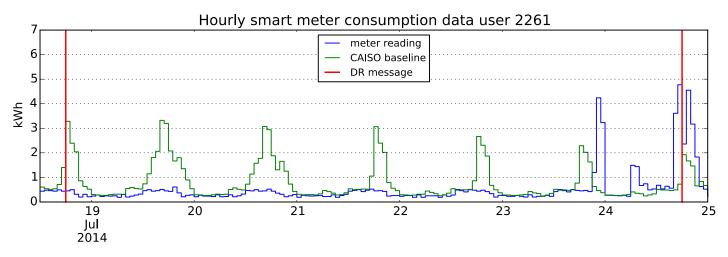
Analyzing Responses to Economic Incentives



- Effect of human behavior on engineered systems
 use incentives to induce changes in behavior
- * Econometrics: Measure effect of "treatments" (policy changes, incentive schemes, etc.)
 - * ideally: randomized controlled trial
 - * between-group vs. within-subject experiment design
- * Availability of massive amounts of data
 - * detailed, high freqency, from various sources
 - * typically not experimental, but observational
 - * Goal: combine tools from Machine Learning and Econometrics to analyze behavior of individuals

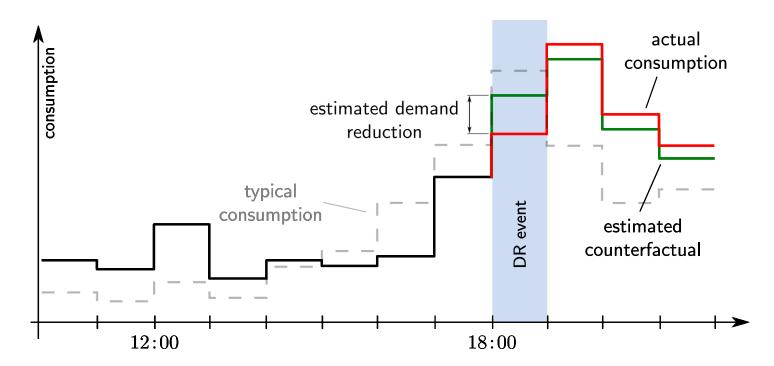
Residential Demand Response

- Customers receive incentives to reduce their power consumption during Demand Response (DR) events
 - * How to quantify the demand reduction?
 - * Baselining is typically used to estimate counterfactual consumption



- * meaningful for customers that exhibit consistent consumption
- * but: user consumption may still be predictable

Estimating Demand Reduction



* Estimated demand reductions are very noisy. How to make sense of them?

The ohmconnect data set

- Founded August 2013, launched February 2014
- * Only third-party residential Demand Response Provider in California

Data for each user in initial data set of 500 users:

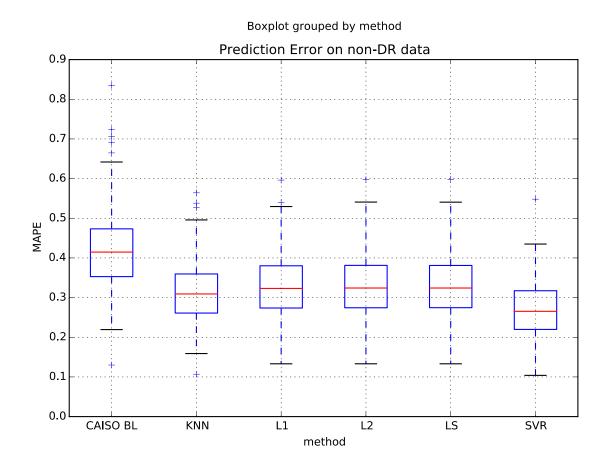
- smart meter data (15min / hourly)
- * "#OhmHour" DR messages (time stamped)
- * approx. location (ZIP code)
- weather data (outside temperature, humidity, wind chill, etc.)
- web site page views and social media posts (daily aggregate)
- number of automated devices (e.g. EVs, smart thermostats)
- indoor temperature and temperature setpoint (for some users)
- electricity tariff

Methodology: Individual Treatment Effects

Clean data Split data into non-DR and Train Machine Learning algorithms on non-DR data DR components remove outliers using cross-validation normalize • Assumption: User reverts to • scrape weather data regular behavior within 12h consumption (auto-regressive) after a DR event • get weekends / holidays temperature / humidity • time of day, day of week Predict counterfactual Perform non-parametric hypothesis test consumption during DR Obtain estimate $\widehat{\Delta}$ and nonevents Null Hypothesis: Samples come parametric confidence from same distribution • Normalized by users's mean interval for Δ • Alternative Hypothesis: location consumption parameter shifted by Δ during determine prediction errors **DR** events

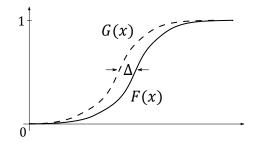
Prediction Quality

* Results based on 321 users for which sufficient trainig data is available



Non-Parametric Estimates of Demand Reduction

- y / y_{DR} : vectors of realized consumption readings during non-DR / DR events \hat{y} / \hat{y}_{DR} : vectors of predicted counterfactuals during non-DR / DR events
- * Assumption: The location parameters of distributions of $\hat{y}_{DR} \sim F$ and $y_{DR} \sim G$ differ by Δ , i.e. $G(x) = F(x + \Delta)$
- * Null Hypothesis: $\Delta = 0$



First-differences (FD) specification:

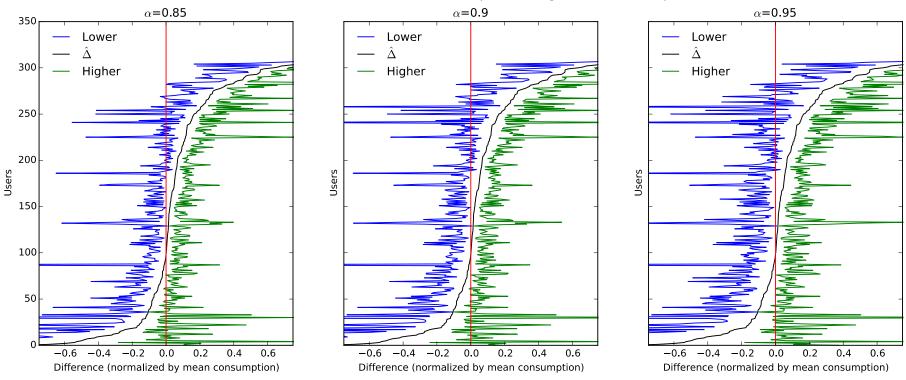
- * compare paired samples (\hat{y}_{DR}, y_{DR}) using a singed rank test
- * estimate median of the difference between a sample from \hat{y}_{DR} and a sample from y_{DR}

Difference-in-differences (DID) specification:

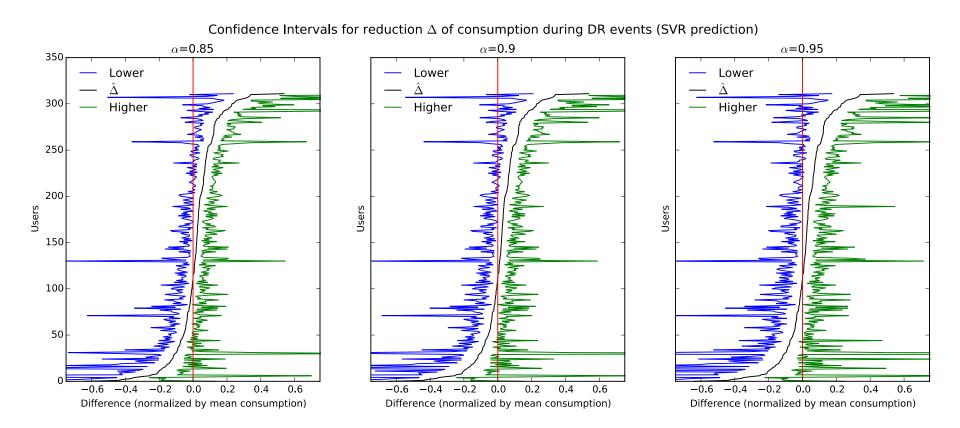
- * compare prediction errors $e = \hat{y} y$ and $e_{DR} = \hat{y}_{DR} y_{DR}$ using a rank sum test
- * estimate median of the difference between a sample from e and a sample from e_{DR}

Results: FD Specification

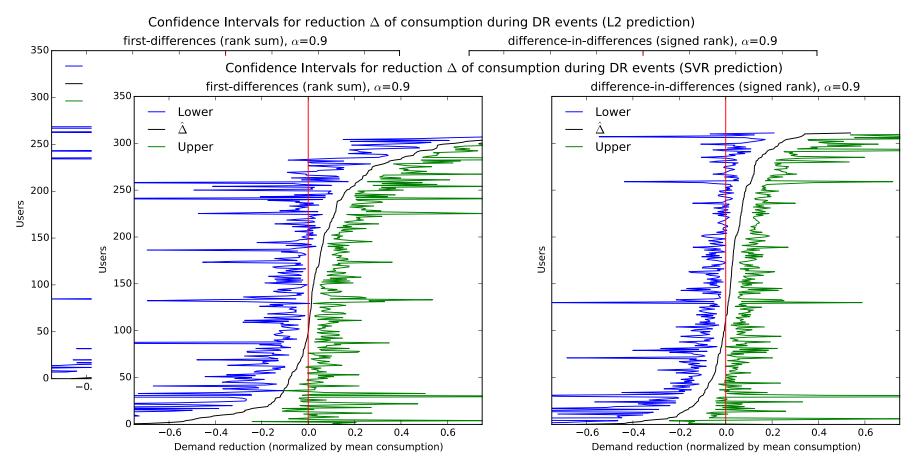
Confidence Intervals for reduction Δ of consumption during DR events (SVR prediction)



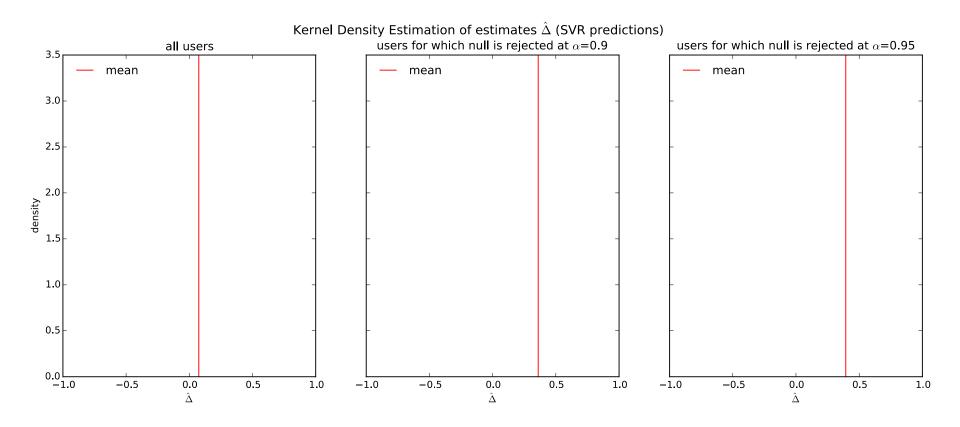
Results: DID Specification



Effects of Bias in the Prediction Model



Distribution of Reductions during DR events



Additional Challenges:

* Effect of prediction method on the test's power:

α	# users null rejected: DiD, SVR	# users null rejected: DiD, baseline	# users in common
85%	81	94	39
90%	63	70	27
95%	42	47	14

* Potential issue: Endogeneity in choosing the DR events

* Where are the automated users?

α	% automated (DID, SVR)	% automated (DID, baseline)
85%	16.0	16.0
90%	11.1	14.3
95%	9.5	14.9

Conclusion and Future Work

Conclusion

- Combining Machine Learning and non-parametric statistics provides powerful econometric tools for user-level analysis
 - * allows to estimate user engagement based on observational data only
- Additional care must be taken in handling potential pitfalls arising from generic Machine Learning algorithms (biased estimators, overfitting, etc.)

Future Work

- * Analyze and correct for various potential biases in the methodology:
 - * self-selection bias, endogeneity of DR events, omitted variable bias, etc.
 - * validate results against randomized field experiment
- * Perform analysis on larger data set with more DR events per user
- * Predict users engagement based on additional high-level data on users