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Nonlinear dynamics (1935 – present)

Freeway dynamics
– Lighthill-Whitham-Richards PDE
– Second order models (ARZ)
– Phase transition models
– Hamilton-Jacobi PDE

Arterial modeling
– Hamilton-Jacobi PDE
– Queuing systems

Routing
– Stochastic on time arrival (SOTA)
– Riemann solvers (junctions)
– Max-pressure controllers

[Bayen, Strub, IJRNC 2006, Work et al. AMRX 2010, Blandin et al., 

SIAM JMA, 2011, Delle Monache et al., SIAM JAM 2014] 
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Classical sensing infrastructure (1960’ – present)

Dedicated traffic monitoring infrastructure (since the 1960’):
– Self inductive loops
– Wireless pavement sensors
– FasTrak, EZ-pass transponders
– Cameras
– Radars
– License plate readers
– Traffic tubes

Issues with this traditional infrastructure
– Installation and maintenance costs
– Reliability
– Sparse coverage

[Hoh et al., IEEE TMC 2012, MobiSys 2008, Claudel, Bayen, Saint-Pierre HSCC 2007]
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Classical control infrastructure (1960 – present)

Dedicated traffic control infrastructure (since the 1960’):
– City traffic lights
– Metering lights
– Changeable message signs
– HOV lanes, HOT lanes, reversible lanes
– Bridge metering
– Variable speed limits

Issues with this traditional infrastructure
– Limited control over motorists
– Virtually no control over routing
– Limited availability of demand and forecast
– Fragmentation of systems 



Example: the I210 Connected Corridors testbed

Asset inventory sample

– Metering lights: 35, including I-650/I-210 freeway-to-freeway metering

– Instrumented intersections: 450 across all cities

– Changeable message signs: 4 existing + 6 Caltrans +12 Pasadena

– Wayfinding signs: 60 to be installed across corridor

– HOV lanes: 1 - On I-210 EB and WB, 2 on-ramp w. dedicated HOV lane
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State estimation, demand and state forecast
Example: interface of the Connected Corridors decision support system

– Real-time demand forecast
– Real-time state estimation and state forecast
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Example: interface of the Connected Corridors decision support system
– Real-time demand forecast
– Real-time state estimation and state forecast

State estimation, demand and state forecast
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Optimization and control 
Algorithms for traffic flow control and optimization 

– Playbooks among scenarios
– In some cases: real-time (P, PID, MPC, etc.)
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Optimization and control
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Algorithms for traffic flow control and optimization 
– Playbooks among scenarios
– In some cases: real-time (P, PID, MPC, etc.)

[Reilly et al., JOTA 2015, Reilly et al. IEEE TITS 2015]
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User interface
Human in the loop for infrastructure control

– Down to single asset level (traffic light, CMS, etc.)
– Limited ability to actuate pre-planned scenarios (system-wide)
– Difficulties to coordinate across jurisdictions
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Problem statement: route flow estimation

[Wu et al., ISTTT 2013, TR-C 2013, ACM TCPS, 2017]



Block simplex constrained quadratic programming

[Wu et al., ISTTT 2013, TR-C 2013, ACM TCPS, 2017]



Example implementation on STEM data

1 min. cell tower handoffs

~ 40% of California population
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Example implementation on STEM data

1 min. cell tower handoffs

~ 40% of California population



Example implementation on STEM data



Results

Algorithm produces distribution of flows along the different OD paths
– Approach is data driven, does not make assumption on the 

routing behavior of agents (Nash, UE, Social Optimum, etc.)
– Approach takes into account “potential” routes taken by users 

(which can be parametrized). 

routes

Cells (towers)
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State estimation from heterogeneous sources
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State estimation from heterogeneous sources
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State estimation from heterogeneous sources

Loop detector



State estimation from heterogeneous sources

Loop detector

Initial condition 

(night reset)
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State estimation from heterogeneous sources
Process: Hamilton-Jacobi PDE, with 
concave non smooth Hamiltonian
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Data assimilation and reconciliation

Existence/uniqueness 
of solution of (1)

[SIAM SICON, 2008] 

Lax Hopf formula
[IEEE TAC 2010a]

Internal / BC / IC sol. 
computation

[IEEE TAC 2010b]

Convex formulation for 
the estimation problem

[SIAM SICON 2011]



Data assimilation and reconciliation



Data assimilation and reconciliation



Implementation at 2% penetration rate

Paradise for data assimilation starts at 2% penetration rate
– However, it is rare to have such penetration uniformly
– Algorithms often used at lower penetration
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Historical perspective on mobile devices

Start of Mobile Millennium

Today



Mobile Millennium (2008-2010)

An early instantiation of participatory sensing 
– Consortium: NSF, US  DOT, Caltrans, Nokia, NAVTEQ, + 10 others
– 2008: 5000 downloads of the FIRST Nokia traffic app worldwide
– After a few months: about 60 million data points / day from dozen 

of sources (smartphones, taxis, fleets, etc.)



Historical indirect smartphone beneficiary: traffic

2008 2010



57

Prototype experiment: Mobile Century (2008)

Experimental proof of concept: the Mobile Century field test
– February 8th 2008
– I80, Union City, CA
– Field test, 100 cars
– 165 Berkeley students drivers
– 10 hours deployment, 
– About 10 miles
– 2% - 5% penetration rate



A glimpse of Mobile Century (2008)



A glimpse of Mobile Century (February 8th, 2008)

[Herrera et al., TR-C, 2010]



Data sample

500 vehicles sampled at 30’ intervals

One day of data, 0.5% penetration



Architecture of Mobile Millennium



The early days of Mobile Millennium

Friday, March 20th, 2009, [accelerated] synchronized movies
– Acceleration: 1 frame = 30 seconds of physical time
– 1:30pm (Friday afternoon congestion)

Google Maps (no probes) Mobile Millennium (probe based)



Project and industry timeline

63

Initial R&D
Continued Public-Private R&D on Probe Data 

Processing

Industrial Development

2008 2009 2010 2011

Mobile 

Millennium
Commercialization

Mobile 

Century

ITS World 

Congress

2012



Contributions of the Mobile Millennium project

Modeling contributions
– Flow models for integration of Lagrangian data for highways
– Machine learning models for arterial traffic

Estimation contributions
– Statistical filtering for discretized PDEs (EnKF, PF, EKF, etc.)
– Convex optimization approaches to data assimilation 

(variational formulations, viability formulations)

Experimental contributions
– Building an app and a full backend system (three times…)
– Running experiments at scale
– Integrating private sector feeds into live system

Data quality contributions
– Penetration studies (how much GPS data do we need?)
– Procurement for the State of California

[Belletti et al., Phys. Let. A, 2015, Patire et al. TR-C, 2014, Thai and Bayen, IEEE TAC 2014, Hunter et al., IEEE TASE, 2013]
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The impact of traffic apps on system dynamics

Fundamental premise of routing services
– Each app enabled user receives a [SOTA] shortest path
– Some follow the recommendations

All paths proposed are nearly equal:
– Shortest path (55mins)
– Third shortest path (58 mins)
– Second shortest path (56 mins)

Routing does in general not depend on
– Forecast of the network loading

using demand data (incomplete today)
– Forecast of the network using potential

impact of routing (i.e. routed users) on 
the network

– Knowledge of what competitors of the app
are doing (in the present case, Apple, 
INRIX, 511, etc.)

[Samaranayake et al., TR-C, 2012, ALANEX 2014, SIAM MAEE 2014]
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Initially people “thought” app helped
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Citizens start to resist
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Neighborhoods and cities start to resist
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Neighborhoods and cities start to resist



No real policy to help elected officials
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People predict lawsuits



Lawsuits happen



But few people are asking the right question



Extent of the problem in the US



Experimental validation



A sequence of events well studied in isolation

2-hour scenario, simulated from 7am to 9m
– Coupling hard to model
– Coupling dependent on information patterns
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A sequence of events well studied in isolation

x
App induced rerouting

Faster queue growth 

(backpropagating shockwave)

2-hour scenario, simulated from 7am to 9m
– Coupling hard to model
– Coupling dependent on information patterns



A sequence of events well studied in isolation

x

Bottleneck removal

Bottleneck removal

2-hour scenario, simulated from 7am to 9m
– Coupling hard to model
– Coupling dependent on information patterns



A sequence of events well studied in isolation

x
Residual rerouting of congestion

2-hour scenario, simulated from 7am to 9m
– Coupling hard to model
– Coupling dependent on information patterns



A sequence of events well studied in isolation

Activation of a diverge

bottleneck due to app rerouting

2-hour scenario, simulated from 7am to 9m
– Coupling hard to model
– Coupling dependent on information patterns



A sequence of events well studied in isolation

Increased congestion (flow saturation)

Regular congestion

2-hour scenario, simulated from 7am to 9m
– Coupling hard to model
– Coupling dependent on information patterns



A sequence of events well studied in isolation

Intersection saturation

Regular demand satisfied

2-hour scenario, simulated from 7am to 9m
– Coupling hard to model
– Coupling dependent on information patterns



A sequence of events well studied in isolation

Residual intersection bottleneck:

intersection cannot recover

2-hour scenario, simulated from 7am to 9m
– Coupling hard to model
– Coupling dependent on information patterns



A sequence of events well studied in isolation

Freeway

connector

inaccessible due

to spillback

Freeway starved

Freeway

connector under

typical conditions

2-hour scenario, simulated from 7am to 9m
– Coupling hard to model
– Coupling dependent on information patterns



A sequence of events well studied in isolation

Reduced flows

Residual rerouting

congestion

2-hour scenario, simulated from 7am to 9m
– Coupling hard to model
– Coupling dependent on information patterns
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Static problem statement

O

D

Paths from O to D

Using a classical Nash (user equilibrium) framework
– Model two classes of users: 

– App-enabled users, who have access to traffic information 
and follow shortest path

– Non-app enabled users, who keep choosing high-capacity 
roads over low capacity roads

[Thai et al., IEEE ITSC 2016]



Static results

[Thai et al., IEEE ITSC 2016]



Application for 3 miles in Pasadena
Impact of increased app use for through traffic

– Immediate massive reroute through Pasadena (2 reroutes)
– Travel time in Pasadena increases by 17%

3 

miles



Example for 3 miles in Pasadena
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[Thai et al., IEEE ITSC 2016]



Control: Nash-Stackelberg games (parallel networks)

First, leader routes compliant drivers       : strategy 

Second, followers (non-compliant drivers               ) choose their 
routes selfishly: strategy t(s) 

Leader seeks to minimize system-wide cost:

Optimal Stackelberg strategies                                 are NP-hard 
to compute (in the size N) for monotonically increasing latency. 
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Multi-player situation

Waze Google Apple INRIX Bing (Microsoft)

30%

8%

62% 40%

6%

54% 60%

3%

37% 0%

0%

100% 12%

9%

79%

All users of each company “equal” by standards of the company i.e. same 

(shortest) travel time according to the company, “Nash-sampling”. 
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Dynamics learning



Dynamics learning

As more historical data, routing systems (companies) learn and evolve 
– These “learning” algorithms are unknown outside the companies
– Companies have non-cooperative strategies among each other 
– This is in addition to providing selfish routing to their users

Distributed learning dynamics in routing games
– Each player routes population k according to distribution 

(corresponding to one OD pair)
– At each iteration, the population k discovers their outcome
– The routing of population k at the next step is subsequently 

updated according to the following law
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As more historical data, routing systems (companies) learn and evolve 
– These “learning” algorithms are unknown outside the companies
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Dynamics learning
Non equilibrium situations

– Equilibria: good description of system efficiency at steady-sate.
– But systems rarely operate at equilibrium, hence

– Prescriptive models: How do we drive system to eq.?
– Descriptive models: How would players behave in the game?

Goals of the work
– Define algorithm classes for which we can prove convergence
– Robustness to stochastic perturbations.
– Heterogeneous learning: different agents use different algorithms
– Convergence rates.

Related work
– Discrete time: Hannan consistency (Hannan 1957), Hedge 

algorithm for two-player games (Freund 1999), regret based 
algorithms: (Hart 2001), online learning in games (Cesa 2006)

– Continuous time: Potential games under dynamics with positive 
correlation condition (Sandholm 2009), replicator dynamics in 
evolutionary game theory (Weibull 1997), no-regret dynamics for 
two player games (Hart 2001)



Problem formulation

O

D

population k

Important question: what is      ? 



Nash equilibrium

BACK UP SLIDES

O

D

population k

No incentive to deviate

from shortest path



Model 1: regret analysis

Interpretation of the regret and the convergence
– Cumulative regret models the comparison of playing over time the 

best strategy possible (without changing it), and comparing it to 
the strategy obtained by the game. 

– In the case of sublinear regret, the game converges on average 
towards a Nash equilibrium 

– Good for optimization purposes
– Bad for operational purposes (no guarantee on what the outcome 

of the game is)



Model 2: stochastic approximation

Idea: 
– View the learning dynamics as a discretization of an ODE
– Study the convergence of the ODE
– Relate the convergence of the discrete algorithm to the 

convergence of the ODE

Definitions: 
– Discretization (in time)
– Distribution of flow along one arc 
– Set of arcs for population k

Weibull, Evolutionary Game Theory, 1997



AREP: approximate replicator dynamics

Idea: 
– View the learning dynamics as a discretization of an ODE
– Study the convergence of the ODE
– Relate the convergence of the discrete algorithm to the 

convergence of the ODE

Definitions: 
– Discretization (in time)
– Distribution of flow along one arc 
– Set of arcs for population k

Benaim, Dynamics of stochastic approximation algorithms, 1999
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AREP: approximate replicator dynamics

Idea: 
– View the learning dynamics as a discretization of an ODE
– Study the convergence of the ODE
– Relate the convergence of the discrete algorithm to the 

convergence of the ODE, but no convergence rates



Model 3: convex optimization

Idea: 
– View the learning dynamics as a distributed algorithm to minimize 

the function f. 
– Allows us to analyze convergence rates.

Here:
– Class of distributed optimization methods: stochastic mirror 

descent



Approach 3: convex optimization



Approach 3: convex optimization



Approach 3: convex optimization



Convergence



Summary

Distributed learning dynamics in routing games
– Each player routes population k according to distribution 

(corresponding to one OD pair)
– At each iteration, the population k discovers their outcome
– The routing of population k at the next step is subsequently 

updated according to the following law



Summary : Matriochka problems

Faster 

Route

[Samaranayake, Bayen, IEEE ITSC 2011, TR-C, 2012, ALANEX 2014, AATMO 2012] 
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[Krichene, Reilly, Amin, Bayen, et al. IEEE TAC 2014, CDC 2014, Allerton 2013, CDC, 2012] 
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[Krichene, Bayen, Drighes et al.NIPS 2015, 

ICML 2014, ICML 2015, ICCPS 2015, ECC, 

2015, SIAM 2015, IEEE TNCS 2016] 
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Summary: Research focus

Infrastructure CPS

Dynamics governed by nonlinear 

and distributed dynamics

(De)centralized, distributed 

sensing, control, optimization

Feedback loops that integrate 

humans and keep learning

Non cooperative players

Multimodal, mode choice

Behavioral modeling

Automation

[Two sided] markets

Incentivization

Route choice models

MaaS system, shared economy

Resilience

Cybersecurity

In grey: not covered in this talk

Information aware DTA

Information forecast



1. General framework for traffic operations

1. Inference problems
1. Demand inference

2. Traffic estimation

2. Heterogeneous games
1. Heterogeneous game, Nash-Stackelberg solutions

2. Learning dynamics in repeated games

3. Other mobile sensor and data and CPS education

Outline



Using smartphones as seismometers
iShake project 

– One of the first shake monitoring apps on the iPhone (2010)
– Scaled up by SeismoLab with T-Mobile / Deutsche Telekon
– Several 100K downloads in first week of existence



Floating sensor network
Inverse modeling, data assimilation, inference, estimation

– Real-time, online (with streaming data)
– Running two dimensional shallow water models (LBNL REALM)
– Using Ensemble Kalman Filtering, statistical inference methods
– Running on 500 nodes of the Magellan / NERSC cluster at LBNL



Floating sensor network
Experimental deployments

– 100 floating units motorized and passive
– Experimental deployments: Sacramento Delta (CA), Stillwater 

(OK), Bordeaux (France)



Vision-based and mobile/static sensing

Monitoring Alzheimer patients in memory care facilities and homes
– Homes: Android & SmartWatches, sensors: 18 patients
– Memory care facilities: cameras: 100 patients
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1. Demand inference

2. Traffic estimation

2. Heterogeneous games
1. Heterogeneous game, Nash-Stackelberg solutions

2. Learning dynamics in repeated games

3. Other mobile sensor and data and CPS education

Outline



CPS education
A changing time for many disciplines

– Disciplines based on physical sciences
– Civil engineering (structural, geotechnical, transportation)
– Environmental engineering (hydrodynamics, chemistry)
– Mechanical engineering (thermo., fluid mech.)

– Modeling-based disciplines
– Economics, behavioral science
– Epidemiology, physical and human geography



CPS education in CEE
Systems Engineering program (2003 – present)

– Within CEE, 6 faculty (3 emeriti)
– Initial vision: 

– one “physical” discipline, 
– one methodological discipline

– Initially a graduate program
– 100s graduate students since 2003 (MS, MEng, PhD)
– 20+ alums faculty (MIT, Cornell, GT, UMich, UIUC, Purdue) 

– One fully integrated curriculum



CPS education in CEE
Graduate education (student chooses 3 core out of 6 + 5 free)

– 2003: CE271: sensor and signals
– 2004: CE290: control and information manangement
– 2006: CE291: control of distributed parameter systems
– 2009: CE264: behavioral modeling
– 2012: CE263: scalable data analytics
– 2013: CE295: energy systems and control

Undergraduate education (one lower div. 2 core electives)
– 2003: CE191: intro to systems analysis [optimization]
– 2013: CE186: design of cyber physical systems
– 2016: CE88: data science for smart cities

In addition (undergraduate) 
– E7: introduction to numerical 

analysis and programming
– CE93: data analysis (statistics)



CEE systems vision for UG (and grad) curriculum

Analytical 
disciplines

Data 
science

Field 
discipline

CPS

systems

Field disciplines
– Environmental Engineering
– Geotechnical Engineering
– Structural Engineering
– Material Science
– Transportation Engineering
– Project Management
– Energy engineering

Analytical disciplines
– Mathematical modeling
– Model based control
– Optimization
– Signal processing
– Economics

Data science
– Statistics
– Machine learning
– Programming
– Architecture



Broader questions and CEE links to IDSS

Societal dimensions 
– Social and economic networks
– Human models (ex. mobility, energy)
– Markets (ex. energy, transportation)
– Environment (ex. incentivization)
– Infrastructure (ex. electrification)
– Economics (ex. airlines, freight)

Changing landscapes
– Autonomy (incl. flight)
– Electrification
– Shared economy (two-sided markets)
– Rapid urbanization (land use)

Open questions (a few of many)
– Incentivization in networks (ex. transportation)
– Privacy (and security), for ex. in crowdsourcing
– Decision support systems for fully automated districts
– Connection and interactions of networks (ex. energy + water)

Analytical 
disciplines

Data 
science

Field 
discipline

CPS

systems



CEE systems vision for UG (and grad) curriculum
Field disciplines

– Environmental Engineering
– Geotechnical Engineering
– Structural Engineering
– Material Science
– Transportation Engineering
– Project Management
– Energy engineering

Analytical disciplines
– Mathematical modeling
– Model based control
– Optimization
– Signal processing
– Economics

Data science
– Statistics
– Machine learning
– Programming
– Architecture



CEE systems vision for UG (and grad) curriculum
Field disciplines

– Environmental Engineering
– Geotechnical Engineering
– Structural Engineering
– Material Science
– Transportation Engineering
– Project Management
– Energy engineering

Analytical disciplines
– Mathematical modeling
– Model based control
– Optimization
– Signal processing
– Economics

Data science
– Statistics
– Machine learning
– Programming
– Architecture



Links with the Institute of Transportation Studies

Missions
– Research
– Teaching
– Tech transfer
– Library

Spans
– 7 Departments
– 4 Colleges
– LBNL



Ideas
Ideas

– Problems worked in isolation: hard to find the proper 
abstractions

Inference and control in routing games
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– Problems worked in isolation: hard to find the proper 
abstractions

Backup slides

Control



Nonlinear dynamics of DTA

Travel time forecast

– Historical

– Static (instantaneous)

– Historical (statistical) forecast

– DTA (model based) forecast

– Information aware forecast (i.e. 
incorporating user’s reaction to 
information)

Heterogeneous population

– “Non-app-enabled” users

– App enabled users

– Some act on info

– Some do not

– Various versions of shortest time

– Dijkstra and extensions

– SOTA

– Driver preferences

– Clock update



Finite-horizon Optimal Control Problem

* Non-linear

* Non-smooth

* Non-convex

Model predictive control formulation
– Nonlinear, nonsmooth, nonconvex optimization program
– Objective function: arbitrary velocity target on freeways
– Dynamics: LWR PDE, discretized by Godunov scheme
– Optimization:

– Adjoint based method
– ADMM
– BFGS



Control

Optimal control problem in freeway operations management
– Minimize arbitrary cost function with boundary control (inflow 

at on ramps)
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Application to the routing game



Convergence on average



Convergence on average



Routing game with strongly convex potential



Routing game with strongly convex potential



Practical game implementation: field experiment
Idea of the game: study non-cooperative behavior of routing 
applications “managers”

– As if Google was “playing against” Apple, INRIX etc.
– Study evolution of distribution over successive iterations 



Practical game implementation: field experiment
Idea of the game: study non-cooperative behavior of routing 
applications “managers”

– As if Google was “playing against” Apple, INRIX etc.
– Study evolution of distribution over successive iterations 

Each “manager” has knowledge

of the network



Practical game implementation: field experiment
Idea of the game: study non-cooperative behavior of routing 
applications “managers”

– As if Google was “playing against” Apple, INRIX etc.
– Study evolution of distribution over successive iterations 

Through an interface he/she can choose

the distribution of his/her flow on the network

(for the game: on one OD pair)



Practical game implementation: field experiment
Idea of the game: study non-cooperative behavior of routing 
applications “managers”

– As if Google was “playing against” Apple, INRIX etc.
– Study evolution of distribution over successive iterations 

Depending on the setting: each user can see a subset (or all) of:

- His/her costs at each iteration

- Cumulative costs (performance) over the games

- History of plays (i.e. how he/she allocated the flows previously)



Game process



Learning how players learn



Cost of each player (normalized by eq. cost)



Potential function



Average of KL divergence 
Average KL divergence between

– Predicted distributions
– Actual distributions 

As a function of the prediction horizon h


