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Outline

| 1. General framework for traffic operations |

1. Inference problems
1. Demand inference
2. Traffic estimation

2. Heterogeneous games
1. Heterogeneous game, Nash-Stackelberg solutions
2. Learning dynamics in repeated games

3. Other mobile sensor and data and CPS education
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Nonlinear dynamics (1935 — present)

Freeway dynamics
— Lighthill-Whitham-Richards PDE [
— Second order models (ARZ)
— Phase transition models
— Hamilton-Jacobi PDE

Arterial modeling
— Hamilton-Jacobi PDE
— Queuing systems

Routing
— Stochastic on time arrival (SOTA)
— Riemann solvers (junctions)
— Max-pressure controllers

[Bayen, Strub, IJRNC 2006, Work et al. AMRX 2010, Blandin et al.,
SIAM JMA, 2011, Delle Monache et al., SIAM JAM 2014]



Classical operations framework in transportation

noise naise
Systems . Output
Control . Sensing
> || |nfrastructure | Dgi;rgcl)cs > Infrastructure ' @
Process

Demand and | State
State Forecast Estimation

Operator

Interface e Optimization |<—

Controller

Scenario

Human Playbooks

|npUt e

"

Demand
Playbooks

-_




Classical sensing infrastructure (1960° — present)

Dedicated traffic monitoring infrastructure (since the 1960 ):
— Self inductive loops -
— Wireless pavement sensors
— FasTrak, EZ-pass transponders
— Cameras
— Radars
— License plate readers
— Traffic tubes

Issues with this traditional infrastructure
— Installation and maintenance costs
— Reliability

— Sparse coverage

[Hoh et al., IEEE TMC 2012, MobiSys 2008, Claudel, Bayen Saint-Pierre HSCC 2007]



Classical operations framework in transportation

noise nQise
Systems : Output
Control . Sensing
> = nfastructure | Dgijfrgcl)cs > Infrastructure : @
Process

Demand and | State
State Forecast Estimation

Operator

Interface e Optimization |<—

Controller

Scenario

Human Playbooks

|npUt e

"

Demand
Playbooks

-_




Classical control infrastructure (1960 — present)

Dedicated traffic control infrastructure (since the 1960’):
— City traffic lights
— Metering lights
— Changeable message signs
— HOV lanes, HOT lanes, reversible lanes
— Bridge metering
— Variable speed limits

Issues with this traditional infrastructure
— Limited control over motorists
— Virtually no control over routing
— Limited availability of demand and forecast
— Fragmentation of systems
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Example: the 1210 Connected Corridors testbed

Asset inventory sample

— Metering lights: 35, including 1-650/1-210 freeway-to-freeway metering
— Instrumented intersections: 450 across all cities

— Changeable message signs: 4 existing + 6 Caltrans +12 Pasadena

— Wayfinding signs: 60 to be installed across corridor

— HOV lanes: 1-0n [-210 EB and WB, 2 on-ramp w. dedicated HOV lane
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State estimation, demand and state forecast

Example: interface of the Connected Corridors decision support system
— Real-time demand forecast
— Real-time state estimation and state forecast
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State estimation, demand and state forecast

Example: interface of the Connected Corridors decision support system
— Real-time demand forecast
— Real-time state estimation and state forecast
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State estimation, demand and state forecast

Example: interface of the Connected Corridors decision support system
— Real-time demand forecast

— Real-time state estimation and state forecast
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Classical operations framework in transportation
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Optimization and control

Algorithms for traffic flow control and optimization
— Playbooks among scenarios
— In some cases: real-time (P, PID, MPC, etc.)
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Optimization and control

Algorithms for traffic flow control and optimization
— Playbooks among scenarios
— In some cases: real-time (P, PID, MPC, etc.)
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User interface

Human in the loop for infrastructure control
— Down to single asset level (traffic light, CMS, etc.)
— Limited ability to actuate pre-planned scenarios (system-wide)
— Difficulties to coordinate across jurisdictions

S— ‘ S
7, 5 \ \ : ‘-n s

f&'i‘“ = \BT

p o

\ r.'-éuic_s
1.




Classical operations framework in transportation

noise nOise
Control Systems Sensing — output
Z | nfrastructure | - DYEam'CS »  Infrastructure
x=f(x)
Process
J
. Demand and State

e Optimization 4 State Forecast | Estimation
)

Controller

-
Scenario
Human Playbooks
\_/
_
| npUt Demand
Playbooks




Classical operations framework in transportation

noise noise

s Control DS yr?::nni]gs — Sensing
> |nfrastructure | y Infrastructure

xX=f(x)

|1-210 Connected Corridors Pilot

Concept of Operations (Draft)

— Operator — Optimization l Demand and - January &, 2015

Interface State Forecast
\ {]:) lllll H
H u m an 2015-01-05
I n p Ut |

Partners for Advanced Transportation Technology works with researchers, practitioners, and
industry to implement transportation research and innavation, including products and services
that improve the efficiency, safety, and security of the transportation system.




Outline

1. General framework for traffic operations

1. Inference problems
| 1. Demand inference |
2. Traffic estimation

2. Heterogeneous games
1. Heterogeneous game, Nash-Stackelberg solutions
2. Learning dynamics in repeated games

3. Other mobile sensor and data and CPS education
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Problem statement: route flow estimation

Route flow estimation problem

Given
» Road network, origins, cells
» Top routes between OD pairs
» Cellpath flows, f
» OD flows, d
» Observed link flows, b

Recover

» Flow along routes, x

Cellpath flow

Flow along a sequence of cells

[Wu etal., ISTTT 2013, TR-C 2013, ACM TCPS, 2017]

Assumptions
» Static, noiseless
» Cell partitioning = Voronoi
» Cellpaths contiguous
» Cellpaths well-posed




Block simplex constrained quadratic programming
Cellpath + observed link flows Cellpath + OD + observed link flows

L
d

2
st. Ux=1f, x>0

A

. : 1

min %”Ax — b||§ min 5 [T} X —
st. Ux=f, x>0

1 ifle 1 ifre
» link-route: A;, = | r; cellpath-route: U, = nrep
0 else 0 else
> be R observed link flow vector, b= (b)icz  OD_route:
» f e Rf' cellpath flow vector f = (f,)pep T = 1 ifrek
' 0 else

> X € Rf' route flow vector, x = (x;),enr

» d e R'f' OD flow vector, x = (xk)ke,ac

Theorem: Optimal solution to box-constrained isotonic regression

Solution x* to block-constrained isotonic regression (BCIR) is the

Euclidean projection of the solution x'° to isotonic regression (IR)
onto the box [0, f,]!"€P!.

. ’

[Wu etal., ISTTT 2013, TR-C 2013, ACM TCPS, 2017]
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Example implementation on STEM data
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Example implementation on STEM data
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Example implementation on STEM data

Page Title x You
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Results

Algorithm produces distribution of flows along the different OD paths

— Approach is data driven, does not make assumption on the
routing behavior of agents (Nash, UE, Social Optimum, etc.)

— Approach takes into account “potential” routes taken by users
(which can be parametrized).
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Outline

1. General framework for traffic operations

1. Inference problems
1. Demand inference
| 2. Traffic estimation |

2. Heterogeneous games
1. Heterogeneous game, Nash-Stackelberg solutions
2. Learning dynamics in repeated games

3. Other mobile sensor and data and CPS education



State estimation from heterogeneous sources
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State estimation from heterogeneous sources
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State estimation from heterogeneous sources

Loop detector
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State estimation from heterogeneous sources

Loop detector

Initial condition
(night reset)

27

26

25

postmile

23

22

11:00

12:00

13:00
time (HH:MM)

14:00

15:00

16:00

60

150

140

130

120

10



State estimation from heterogeneous sources

Loop detector

Initial condition
(night reset)

Probe vehicle
(phone)

27

26

25

postmile

23

22

11:00

12:00

13:00
time (HH:MM)

14:00

15:00

16:00

60

150

140

130

120

10



State estimation from heterogeneous sources

Loop detector

Initial condition
(night reset)

Probe vehicle
(phone)

Re-ID
(LPR, FasTrack)
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State estimation from heterogeneous sources

Process: Hamilton-Jacobi PDE, with
concave non smooth Hamiltonian
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State estimation from heterogeneous sources

Process: Hamilton-Jacobi PDE, with
concave non smooth Hamiltonian
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State estimation from heterogeneous sources

Process: Hamilton-Jacobi PDE, with
concave non smooth Hamiltonian
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State estimation from heterogeneous sources

Process: Hamilton-Jacobi PDE, with

Loop detector concave non smooth Hamiltonian
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State estimation from heterogeneous sources

Process: Hamilton-Jacobi PDE, with

Loop detector concave non smooth Hamiltonian
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State estimation from heterogeneous sources

Process: Hamilton-Jacobi PDE, with

Loop detector concave non smooth Hamiltonian
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State estimation from heterogeneous sources

Process: Hamilton-Jacobi PDE, with

Loop detector concave non smooth Hamiltonian
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Data assimilation and reconciliation

Solution to data
reconciliation problem

Solution to data
assimilation problem

Existence/uniqueness

of solution of (1)
[SIAM SICON, 2008]

Lax Hopf formula
[IEEE TAC 2010a]

Internal / BC / IC sol.
computation
[IEEE TAC 2010b]

Convex formulation for
the estimation problem
[SIAM SICON 2011]

For PWA boundary, internal, and initial conditions

M(t, x), (1)

with parameters in acceptable intervals, model constraints induced

by
dMﬁ('?x) L, (_amégi, x)) o 2

are a set of convex inequalities in the unknown initial, boundary and
internal condition coefficients. For measurement data error bounded
in Ly, Ly or L norm, constraints resulting from measurement error
are convex.

e 7
Corollary

The data reconciliation problem and data assimilation problems can
be posed in convex form as

[m — nl|
m satisfies inequality constraints induced by (2)
n satisfies inequality constraints from sensor specs. (1)

min{m,n}
s.t.

-




Data assimilation and reconciliation

Solution to data
reconciliation problem

Solution to data
assimilation problem

Viability Theory

New Directions

Second Edition

.

For PWA boundary, internal, and initial conditions

M(t, x), (1)

with parameters in acceptable intervals, model constraints induced

by
am(gi,x) 4 (‘ng?)()) o 2

are a set of convex inequalities in the unknown initial, boundary and
internal condition coefficients. For measurement data error bounded
in Ly, Ly or L norm, constraints resulting from measurement error
are convex.
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Corollary
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The data reconciliation problem and data assimilation problems can
be posed in convex form as

|m — n|
m satisfies inequality constraints induced by (2)
n satisfies inequality constraints from sensor specs. (1)

minm,n}
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Data assimilation and reconciliation

Via
New D

Secont

Solution to data

Semi-analytic methods for
first order hyperbolic scalar
conservation laws and scalar
Hamilton-Jacobi equations

— Monograph -

March 19, 2017
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Springer

reconciliation problem

Solution to data
assimilation problem

.

For PWA boundary, internal, and initial conditions

M(t, x), (1)

with parameters in acceptable intervals, model constraints induced

by
aM(g?X) 4 (_amfgi, x)) o 2

are a set of convex inequalities in the unknown initial, boundary and
internal condition coefficients. For measurement data error bounded
in Ly, Ly or L norm, constraints resulting from measurement error
are convex.

7

Corollary

=

The data reconciliation problem and data assimilation problems can
be posed in convex form as

min{m,n} ”m - n”
s.t. m satisfies inequality constraints induced by (2)
n satisfies inequality constraints from sensor specs. (1)
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Paradise for data assimilation starts at 2% penetration rate

— However, it is rare to have such penetration uniformly

— Algorithms often used at lower penetration
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Implementation at 2% penetration rate

Paradise for data assimilation starts at 2% penetration rate
— However, it is rare to have such penetration uniformly
— Algorithms often used at lower penetration
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Implementation at 2% penetration rate

Paradise for data assimilation starts at 2% penetration rate

— However, it is rare to have such penetration uniformly

— Algorithms often used at lower penetration
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Historical perspective on mobile devices

US Smartphone Penetration
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B Penetration Other
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Mobile Millennium (2008-2010)

An early instantiation of participatory sensing
— Consortium: NSF, US DOT, Caltrans, Nokia, NAVTEQ, + 10 others
— 2008: 5000 downloads of the FIRST Nokia traffic app worldwide

— After a few months: about 60 million data points / day from dozen
of sources (smartphones, taxis, fleets, etc.)
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Prototype experiment. Mobile Century (2008)

Experimental proof of concept: the Mobile Century field test

— February 8t 2008

180, Union City, CA

Field test, 100 cars

165 Berkeley students driver
10 hours deployment,

About 10 miles

2% - 5% penetration rate
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of Mobile Century (February 8™, 2008)
L. la 'E

[Herrera et al., TR-C, 2010]



Data sample

500 vehicles sampled at 30’ intervals

One day of data, 0.5% penetration

T
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Architecture of Mobile Millennium




The early days of Mobile Millennium

Friday, March 20t, 2009, [accelerated] synchronized movies
— Acceleration: 1 frame = 30 seconds of physical time
— 1:30pm (Friday afternoon congestion)

Google Maps (no probes) Mobile Millennium (probe based)



Project and industry timeline
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Contributions of the Mobile Millennium project

Modeling contributions

— Flow models for integration of Lagrangian data for highways
— Machine learning models for arterial traffic

Estimation contributions
— Statistical filtering for discretized PDEs (EnKF, PF, EKF, etc.)

— Convex optimization approaches to data assimilation
(variational formulations, viability formulations)

Experimental contributions
— Building an app and a full backend system (three times...)
— Running experiments at scale
— Integrating private sector feeds into live system

Data quality contributions
— Penetration studies (how much GPS data do we need?)
— Procurement for the State of California

[Belletti et al., Phys. Let. A, 2015, Patire et al. TR-C, 2014, Thai and Bayen, IEEE TAC 2014, Hunter et al., IEEE TASE, 2013]



Outline

1. General framework for traffic operations

1. Inference problems
1. Demand inference
2. Traffic estimation

2. Heterogeneous games

| 1. Heterogeneous game, Nash-Stackelberg solutions |
2. Learning dynamics in repeated games

3. Other mobile sensor and data and CPS education



The impact of traffic apps on system dynamics

Fundamental premise of routing services
— Each app enabled user receives a [SOTA] shortest path
— Some follow the recommendations

ooooo AT&T LTE 11:08 AM

All paths proposed are nearly equal: B ,
— Shortest path (55mins) e '
— Third shortest path (58 M R smn @ 3ws b b w2
— Second shortest path (56 mins) =) Y ”

Routing does in general not depend on

— Forecast of the network loading
using demand data (incomplete today)

— Forecast of the network using potential
Impact of routing (i.e. routed users) on
the network

\e g icir @

— Knowledge of what competitors of the app|".. . @f ®
are domjc_; (in the present case, Apple, AN
INRIX, 511, etc.) R 6

55 min (37 mi) @

Fastest route, the usual traffic

€ Ry

[Samaranayake et al., TR-C, 2012, ALANEX 2014, SIAM MAEE 2014]



Classical operations framework in transportation
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There i1s now an active feedback loop in the plant

noise noise

Systems . Output
Control . Sensing

Z > Infrastructure DYEam'CS Infrastructure ' —
X=f(x)
Faster 7
Route Plant

OPErator | o Optimization  ‘e— Demand and — State

Interface State Forecast Estimation

| Controller

Human Playbooks
Input Demand

Playbooks




There i1s now an active feedback loop in the plant
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Initially people “thought™ app helped

BLOG gl W GETHELP TALKTOUS PERFORMANCE ABOUT

Eric™
Garcetti

Press Releases

Home — Media — Press Releases —

Mayor Garcetti Details Agreement with

WAZE to Help Reduce Congestion,

Increase Safety, and Improve Driving
“+ % Experience Around L.A.

5 w«  Posted by Mayor Eric Garcetti on April 21, 2015 - Flag

App will feature first-ever hit-and-run notifications and AMBER Alerts to aid

e public safety
el i1 '“.i
¢ i~ Mayor Garcetti today announced the details of a data-sharing agreement
vy between the City of Los Angeles and Waze, an agreement he previewed in his

State of the City Address last week. The Waze app is used by more than 1.3

Building the city of our
dreams starts with you,
sign up!

 em

or sign in with

"8 Mayor Eric Garcetti ©

27,775 people like Mayor Eric Garcetti.




nitially people “thought” app helped

©
Increase Safety,
&y Experience Around LA

@ MODIC ,‘,":f, ABOUT HOW  PORTFOLIO INSIGHTS  CONTACT Q

Los Angeles and Waze Team Up to Combat Traffic
Congestion

When Americans think of traffic they think of Los Angeles, even if they’ve never visited. So it makes sense that the LA mayor’s office has
announced that the city is partnering with traffic app Waze to help combat the congestion. The deal allows data to be shared between the
two parties—the city will alert Waze about hazards, construction and crashes while the app will give the city a wealth of data to analyze how

traffic moves. Ideally this will allow for changes that will improve commutes.




Until more and more people started using it

@ mobiquity.

Los Angeles and Waze Team Up to Combat Traffic
Congestion

9 Investigates traffic apps pushing drivers
into neighborhood streets

by: Alexa Ashwell Updated: Jul 6, 2016 - 5:59 PM




Until more and more people started using it

Do — - - - HOW PORTFOLIO INSIGHTS ~CONTACT ~ Q
9 Investigates traffic apps pushing drivers
into neighborhood streets

by: Alexa Ashwel Updaod: 1 6, 2016 - 559 I

to Combat Traffic

ile the app will give the city a wealth of data to analyze how

#\' TRENDING TOPICS ~  NEIGHBORHOODS  CITIES ~

LOS ANGELES

=
Westsiders Freaking That People Are Driving By “*
Their Houses

BY BIANCA BARRAGAN | DEC 15, 2014, 12:05PM PST

R T X

TRENDING

14 must-follow Instagram
accounts for LA lovers

fessvEEEE e A peek inside newly restored
and revamped Lankershim train
depot in NoHo




Until more and more people started using it
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Specific apps are identified as responsible

HOW  PORTFOLIO INSIGHTS ~CONTACT Q@

New traffic apps may
idential areas

L d sy s sense that the LA mayor’s office has
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CNET > Internet » Locals upset at Google's Waze for sending traffic to their streets

Locals upset at Google's Waze for sending
traffic to their streets

LA residents complains that Waze creates congestion on roads once only known to those who live there.

by Donna Tam W @Donna¥Tam / December 14, 2014 11:25 AM PST

Tailor your cloud to your app.
Not the other way around.  "EcRemersrociow

(."?rackspace

The residents of neighborhoods in Los Angeles
County are not happy with Waze, Google's
crowdsourced mapping app. It's sending the area's | w

infamonuis freowav traffic onto their once aniet =

® THIS WEEK'S MUST READS /




S ot Teatti ( Get the Waze out of here! Echo Park residents blame apps for
sending traffic to steep streets

Locals upset at Google's Waze for sending
,tfaﬁlc to their streets 532 Comments ECHO PARK

[ ¥ Twoet | | Email this |

The Baxter Jam during a recent Dodger home game




< HOW  PORTFOLIO INSIGHTS ~CONTACT Q@

hpset at Google's Waze for sending
o their streets

Tailor your cloud to your app.
Not the other way around.  eGewemmaEsRY

@rackspace

How an app destroyed

their streets: Readers count the Waze

Related Coverage
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HOW  PORTFOLIO INSIGHTS ~CONTACT Q@

Ihaot Troffi

How an app destroyed
their streets: Readers count the Waze

In L.A., One Way to Beat Traffic Runs Into Backlash

Popular Waze app sends drivers to side street, riling residents

The navigation app Waze offers drivers alternate routes to busy roads, but it's also clogging some local streets with bumper-to-bumper
traffic and upsetting residents. Photo: Joe Flint/The Wall Street Journal




Specific apps are identified as responsible

LA Neighborhood Blames Waze App for
Morning Traffic Jams

Dec 15, 2014, 3:199 PM ET
By DINA ABOU SALEM via WORLD NEWS

SHARE W

LA Neighborhood Blames Waze App for Traffic Jam




Specific apps are identified as responsible

LA Traffic Is Getting Worse And People Are
Blaming The Shortcut App Waze

AP JOHN ROGERS, Associated Press
©® Dec. 14, 2014,12:59 PM 4 13,855

-}

LOS ANGELES (AP) —
When the people whose
houses hug the narrow

r-) 1.2 miles
Fulton Street

warren of streets

paralleling the busiest

urban freeway in America | = & | [& @
l avigate Vly Waze
b

began to see bumper-to-

bumper traffic crawling

by their homes a year or
so ago, they were baffled.




LA Traffic Is Getting Worse And People Are
Blaming The Shortcut App Waze

LOS ANGELES (AP) —
‘When the people whose:

ago, they were bafled.

_|ze for sending

iy knoven to thoss who live thero.

S CINIBC HOMEUS. v NEWS MARKETS INVESTING TECH MAKEIT VIDEO

LA residents complain about
'Waze Craze'

Jane Wells | @janewells
Thursday, 11 Dec 2014 | 2:54 PM ET

S2cnec

Drivers in Los Angeles pride themselves on their ability to strategize
the daily commute. Every day presents a new challenge: Find the best
shortcut, the secret alternative route, to shave off precious minutes
from a cruel trek. "Saturday Night Live's"” "The Californians” is played

far Innimhe hiit it vrinace triin




Specific apps are identified as responsible
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LA residents complain about
'Waze Craze'

Locals upset at Google's Waze
for sending traffic to their
streets

LA residents complains that Waze creates congestion on roads once only
known to those who live there.

The residents of neighborhoods in Los

Angeles County are not happy with Waze,
Google's crowdsourced mapping app. It's } @
sending the area's infamous freeway traffic & \a

onto their once quiet streets, the Associated ) : o~

Internet

Press reported Sunday.

by Donna Tam

Decamber 14, 2014 11:25 AM PST The app, known to show drivers the quickest T >
route to their destination by relying on ‘

crowd-sourced information, is showing

@DonnaYTam

What's new




HOW  PORTFOLIO  INSIGHTS ~ CONTACT

for sending traffic to their
streets

LA residents complains that Waze creates congestion on roads once only
known to those who live there.
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Home Video Politics U.S. Opinion Business  Entertainment Tech Science Health Travel Lifestyle World On Air

S.HOME CRIME TERRORISM ECONOMY IMMIGRATION DISASTERS MILITARY EDUCATION ENVIRONMENT PERSONAL FREEDOMS RE(

AUTO TECH

Popular smartphone app causes traffic
jam uproar in California neighborhoods

2014 . Associated Press + Y :] [F;]

More from Fox News

=
Topless mystery Is Elizabeth Warren
woman the most in political trouble in
distracting driver Massachusetts?
ever?

Dec. 9, 2014: Early morning rush hour traffic winds it's way along a narrow street in Sherman Oaks section of Los

Angeles. When the people whose houses hug the narrow warren of streets paralleling the busiest urban freeway in
America began to see bumper-to-bumper traffic rushing by their homes a year or so ago they were baffled. When word
spread that the explosively popular new smartphone app Waze was sending many of those cars through their

neighborhood in a quest to shave five minutes off a daily rush-hour commute, they were angry and ready to fight back.




Specific apps are identified as responsible

HOW  PORTFOLIO INSIGHTS ~CONTACT Q@

Ihaot Troffi
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Popular smartphone app causes traffic
jam uproar in California neighborhoods

CBCNEews |Technology & Science ' )

Home Opinion World Canada Politics Business Health Entertainment Technology & Science Video

QCT L RRSCEL ) Quirks & Quarks Blog  Spark  Photo Galleries

Shortcut-finding app Waze creating residential traffic
headaches

The outcry echoes 25-year-old protests against the app's book equivalent during the L.A. Olympics
By Kim Brunhuber, CBC News Posted: Feb 29, 2016 5:00 PM ET | Last Updated: Feb 29, 2016 5:00 PM ET
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Specific apps are identified as responsible
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Waze App Angers California Residents Due To
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Tuskegee Airmen share memories in Buckhead
appearance

Reporter analysis: Waze directions send traffic through quiet

streets

DeKalb Commissioners to meet in Dunwoody
Feb. 21

A traffic-navigation app called Waze is taking over the roadways and drawing

controversy for encouraging cut-through traffic in neighborhoods locally and 7 more candidates join crowded Congressional
nationwide. race

A recent experiment with Waze found the app indeed directs drivers through Sandy Springs, Cobb Chambers form stadium
quiet neighborhood streets in Buckhead, Dunwoody and Sandy Springs. But, traffic task force
ironically, Waze would not send drivers into a Brookhaven neighborhood that

has been a hot spot of protests about app-driven traffic. Brookhaven receives $5.7m loan to purchase

PDK Airport land

With the motto “Outsmarting

G4 EMm . traffic, together,” Waze uses a Communi ks

0.2 miles combination of GPS tracking ]
and local roadway information » City of Atlanta
Roberts Dr crowdsourced from its own 5
e users. It both directs drivers to » City of Brookhaven

their destinations by the fastest
route and allows them to report
where heavy traffic is, where

City of Brookhaven — Calendar of Events

» City of Dunwoody

Jyhanel G road work is happening, and
even where police have set up » City of Dunwoody — Calendar of Events
Eallery Ct roadblocks.
» City of Sandy Springs

5 itnei G Waze advertises 50 million

1) e le] ple] . .

; i users worldwide. It has gained
popularity from drivers, and

City of Sandy Springs — Community Calendar
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Why homeowners are pissed at Waze for
causing chaos

‘By

v
o 4
i heav ghborhodds.for turning an
offiéiWise V?lpful navigation toolYato a traffic nighmarefor
many heighborhoods. '
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GPS is great for unfamiliar neighborhoods,
estimating how long a trip will take, and finding the

nearest gas station; however, it's also wreaking




Citizens start to resist
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] Ashcroft Residents Work to Stop ‘Waze Craze’
— i | I 5‘“ :\;I:l); il::;n;:::vsners are pissed at Waze for Tr affi C

Fri, May 01, 2015 By Staff 20 Comments

GPS s great for unfamiliar neighborhoods,
estimating how long atrip wil take, and finding the

I king

Joel Becker, right, and Joel Ring, ask traffic to slow on Ashcroft Avenue.




Citizens start to resist
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Ashceroft Residents Work to Stop ‘Waze Craze’
Tra

Frustrated resident shames
commuters invading her streets




Citizens start to resist
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Angry LA residents are trying to sabotage Waze data to
stop side-street congestion

BY MICHAEL CARNEY
ON NOVEMBER 17, 2014
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“These are not startups.” Elizabeth
Warren is worried about big tech — and
big banks — influencing politics

BY DENNIS KEOHANE about an hour ago
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Seymour Hersh and the dangers of
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about 4 hours ago
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Citizens start to resist
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Citizens start to resist
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Neighborhoods and cities start to resist
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How Neighborhoods Are Fighting Off Traffic That Waze
Sends Their Way

When Waze or Google Maps turns your sleepy street into a veritable highway, you don't just have to sit there an
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Neighborhoods and cities start to resist
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Neighborhoods and cities start to resist

MENU LISTEN LIVE 89.7

Why Some Neighborhoods Are Saying No Way To Waze

>

greater
BOSTON _

Why Some Neighborhoods Are
Saying 'No Way' To Apps Like
Waze

September 8, 2016




Neighborhoods and cities start to resist
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Traffic-weary homeowners and Waze are at
war, again. Guess who’s winning?

Most Read

1 Trump makes false statement
about U.S. murder rate to
sheriffs’ group

2 She’s a billionaire who said
schools need guns to fight
bears. Here's what you may
not know about Betsy DeVos.

3 This monster tornado just
rolled through New Orleans —
major damage reported

4 With historic tiebreaker from
Pence, DeVos confirmed as
education secretary




No real policy to help elected officials
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Map apps crowding quiet streets with
cut-through traffic, Quincy councilor

says

Slain North Korean played complicated
role in ruling dynasty

After losing Love for weeks, LeBron and
Cavs beat Wolves

Most Asian markets gain after new Wall
Street high

More questions than answers in death of
North Korean royalty

Foxzs’@ﬂ_q

T WEATHER NEWS TRAFFIC SPORTS VIDEO AROUND TOWN FOX25CARES ABOUTUS MOREY

—
SIGNIN  REGISTER &l ﬂl- 1
»

Map apps crowding quiet streets with cut-
through traffic, Quincy councilor says
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No real policy to help elected officials
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‘Cut-through’ traffic caused by Waze app
must stop, L.A. councilman says

L veoonrers | v JED

2.5 miles
376 E. Crawford Ave.

A Los Angeles city deal with traffic app Waze may be great, but

some local communities are being inundated with “cut-through”
traffic that must stop, a Los Angeles City Councilman said
Tuesday.

Paul Krekorian introduced a motion to help local
neighborhoods, saying Waze should send drivers away from
residential streets and onto major roadways as part of the
company’s data-sharing agreement with the city.

Mayor Eric Garcetti announced last week that the city is sharing
road closure data with Waze to improve its service, and in

retiirn the citv ic gettino live 1indates ahont traffic natterns

We'll send you the latest headlines every
morning at 7 and every weekday afternoon at
5. Our newsletters are free and your email
address is secure.
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LA City Councilmember Wants to Make Waze
Useless

BY BIANCA BARRAGAN | APR 28, 2015, 3:45PM PDT
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TRENDING

LA’s rules against sleeping
overnight in cars will be
enforced starting today




People predict lawsuits
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How social media based traffic routing is making a mess of
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= . Israelis Sue Waze Navigation App for Creating Neighborhood Traffic Jam

News » Israel

Israelis Sue Waze
NavigationApp for
Creating

Neighborhood
TrafficJam

By Naomi Zeveloff

December 8,2016  haaretz



But few people are asking the right question
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The Meveury News -

NEWSLETTER
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TRENDING: OMG, you forgot?!  Michael Flynn ~ Grammy snubs  Aldon Smith  Westminster dog show  California’s best lagers

Opinion > Commentary

Is Google’s Waze app making traffic worse?

By GARY RICHARDS | grichards@bayareanewsgroup.com |
PUBLISHED: January 21, 2016 at 6:58 am | UPDATED: August 11, 2016 at 11:04 pm

Ilove Waze. Absolutely love it.

It’s a great traffic app for alerting drivers to everything from a major crash ahead to a
guy fixing a flat on the shoulder to road crews trimming weeds. Just punch a destination
into your smartphone and a Siri-like voice tells you how to skirt traffic slowdowns.

But not everyone shares my passion.




Extent of the problem in the US
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Experimental validation




A sequence of events well studied in isolation

2-hour scenario, simulated from 7am to 9m
— Coupling hard to model
— Coupling dependent on information patterns

S1: 20% app enabled users

S2: No traffic information




A sequence of events well studied in isolation

2-hour scenario, simulated from 7am to 9m
— Coupling hard to model
— Coupling dependent on information patterns

Incident: 3 lanes
45 mins bottleneck

=it

S1: 20% app enabled users

Incident: 3 lanes
45 mins bottleneck

)

S2: No traffic information




A sequence of events well studied in isolation

2-hour scenario, simulated from 7am to 9m
— Coupling hard to model
— Coupling dependent on information patterns

S1: 20% app enabled users

x-\/(kApp induced ferouting

S2: No traffic information

Faster queue growth

‘-\(backpropagatmg shockwave)




A sequence of events well studied in isolation

2-hour scenario, simulated from 7am to 9m
— Coupling hard to model
— Coupling dependent on information patterns

S1: 20% app enabled users

Bottleneck removal

S2: No traffic information

Bottleneck removal

-




A sequence of events well studied in isolation

2-hour scenario, simulated from 7am to 9m
— Coupling hard to model
— Coupling dependent on information patterns

S1: 20% app enabled users

_*/&Residual rerogting of congestion

S2: No traffic information




A sequence of events well studied in isolation

2-hour scenario, simulated from 7am to 9m
— Coupling hard to model
— Coupling dependent on information patterns

S1: 20% app enabled users

. = Activation of a diverge
/L ‘ battleneck due to app rerouting
el ’

A -

S2: No traffic information




A sequence of events well studied in isolation

2-hour scenario, simulated from 7am to 9m
— Coupling hard to model
— Coupling dependent on information patterns

S

D -

S1: 20% app enabled users

"Increased congestion (flow saturation)

»Regular congestion

S2: No traffic information




A sequence of events well studied in isolation

2-hour scenario, simulated from 7am to 9m
— Coupling hard to model
— Coupling dependent on information patterns

..l % Ihtersectioh saturation ¢

)F\/\

S1: 20% app enabled users

Sh Regular demand satisfied

.

S2: No traffic information




A sequence of events well studied in isolation

2-hour scenario, simulated from 7am to 9m
— Coupling hard to model
— Coupling dependent on information patterns

mtersectlon cannot recover

=

Residual intersection bottleneck:

S1: 20% app enabled users

S2: No traffic information




A sequence of events well studied in isolation

2-hour scenario, simulated from 7am to 9m
— Coupling hard to model
— Coupling dependent on information patterns

S1: 20% app enabled users

A\/ Freeway starved

Freeway
connector
inaccessible due
to spillback

S2: No traffic information

Freeway
connector under

typical conditions




A sequence of events well studied in isolation

2-hour scenario, simulated from 7am to 9m
— Coupling hard to model
— Coupling dependent on information patterns

Residual rerouting
congestion

e
/{\

Reduced flows

S1: 20% app enabled users

S2: No traffic information




Outline

1. General framework for traffic operations

1. Inference problems
1. Demand inference
2. Traffic estimation

2. Heterogeneous games

| 1. Heterogeneous game, Nash-Stackelberg solutions |
2. Learning dynamics in repeated games

3. Other mobile sensor and data and CPS education



Steady state modeling of “feedback in plant”
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Static problem statement

Using a classical Nash (user equilibrium) framework
— Model two classes of users:

— App-enabled users, who have access to traffic information
and follow shortest path

— Non-app enabled users, who keep choosing high-capacity
roads over low capacity roads

~\ %)
1 Y,
h |

Paths from O to D -

Chir

[Thai et al., IEEE ITSC 2016]



Static results

Disjoint union of high and low capacity edges: £ = EM &l

Non-app enabled users cost of e € £'°: ¢7¢(x.) = C to(xe), C > 1
Non-app enabled user cost path p: 32 = > i te(xe) + C D oc o te(xXe)
App enabled cost of path p: /3¢ = ZeEp te(Xe)

Nash equilibrium path flows ("¢ f2¢) € AP x AP satisfy

T

nae gnae _ fnae nae 16 pnae pae
=

e [Fgefo ] 20 vl a7 xa

Property: Convergence guarantee on the heterogeneous game

Since the heterogeneous game is a variational inequality problem,
Frank-Wolfe (a.k.a. conditional gradient) algorithm gives iterates

that converge to the Nash equilibrium.

r

[Thai et al., IEEE ITSC 2016]



— Immediate massive reroute through Pasadena (2 reroutes)

— Travel time in Pasadena increases by 17%

Application for 3 miles in Pasadena
Impact of increased app use for through traffic



Example for 3 miles in Pasadena

Impact of increased app use for through traffic
— Immediate massive reroute through Pasadena (2 reroutes)

— Travel time in Pasadena increases by 17%

22.5-

20.0-

17.5-

travel time

15.0-

12.5-
% of app enabled users

0 5 10 15 20 25
[Thai et al., IEEE ITSC 2016]



Example for 3 miles in Pasadena

Impact of increased app use for through traffic
— Immediate massive reroute through Pasadena (2 reroutes)

— Travel time in Pasadena increases by 17%

22.5-

20.0- 1210

John Nash

17.5-

travel time

15.0-

Pasadena

% of app enabled users
0 5 10 15 20 25

[Thai et al., IEEE ITSC 2016]
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Control: Nash-Stackelberg games (parallel network€¥/

First, leader routes compliant drivers ar : strategy s € Rﬂ\f

Second, followers (non-compliant drivers (1 — «)r) choose their

routes selfishly: strategy t(s) )

OB O

SN tN(S)

Leader seeks to minimize system-wide cost: min C(s + t(s))

Optimal Stackelberg strategies arg min C'(s + t(s)) are NP-hard
to compute (in the size N) for monotonically increasing latency.

For set valued latency functions obtained by inversion of the Hamil-
tonian g(-) of the Hamilton-Jacobi equation, optimal Stackelberg
strategies can be computed in O(N?), by use of a non-compliant
first strategy.




Outline

1. General framework for traffic operations

1. Inference problems
1. Demand inference
2. Traffic estimation

2. Heterogeneous games
1. Heterogeneous game, Nash-Stackelberg solutions
| 2. Learning dynamics in repeated games |

3. Other mobile sensor and data and CPS education



Multi-player situation

Waze Google Apple INRIX Bing (Microsoft)

A B Ml @ 19:04

AT&T = 8:22 AM
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All users of each company “equal” by standards of the company i.e. same
(shortest) travel time according to the company, “Nash-sampling”.



Heterogeneous populations
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Dynamics learning

learning algorithm
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Dynamics learning

| i /i
[ I Iﬂ Online Learning Model
. . w‘.TI".'.‘ :li‘l‘"—.f.'T.if.f— [ — 1: for r e N do
learning algorithm = outcome 2: Play p~ x\"
.’L'{H_l} —u (.’Iift) E(t)) g(ﬂ 3: Discover EE)
g kook k 4: Update X ( (t) E(t))
: k = Up \ X, s %
AgEIlt k 5: end for

As more historical data, routing systems (companies) learn and evolve
— These “learning” algorithms are unknown outside the companies
— Companies have non-cooperative strategies among each other
— This is in addition to providing selfish routing to their users

Distributed learning dynamics in routing games (t)

— Each player routes population k according to distribution p ~ x,
(corresponding to one OD pair)

— At each iteration, the population k discovers their outcome 65:5)

— The routing of population k at the next step is subsequently
updated according to the following law X" = u, (x{9, £{")



Dynamics learning

Online Learning Model

Environment
) . 1: fort € Ndo
learning algorithm outcome 2: Play p~ x\"
${t+1} —u .’Iift} E(t) g(ﬂ 3: Discover EE)
k k %k k (t+1) (t) ,(t)
4: Update x, = uy (Xk v £ )
Agent k‘ 5: end for

As more historical data, routing systems (companies) learn and evolve
— These “learning” algorithms are unknown outside the companies
— Companies have non-cooperative strategies among each other
— This is in addition to providing selfish routing to their users

Distributed learning dynamics in routing games (t)

— Each player routes population k according to distribution p ~ x,
(corresponding to one OD pair)

— At each iteration, the population k discovers their outcome ES)
— The routing of population k at the next step is subsequently

updated according to the following law X" = u, (x{9, £{")



Dynamics learning

Environment . Online Learning Model
Other agents 1: for t € N do
learning algorithm outcome 2: Play p~ x\"
4: Update x;((t_’_l) = uy (x‘((t), EE))
Agent; k — 5: end for

As more historical data, routing systems (companies) learn and evolve
— These “learning” algorithms are unknown outside the companies
— Companies have non-cooperative strategies among each other
— This is in addition to providing selfish routing to their users

Distributed learning dynamics in routing games (t)

— Each player routes population k according to distribution p ~ x,
(corresponding to one OD pair)

— At each iteration, the population k discovers their outcome ES)

— The routing of population k at the next step is subsequently
updated according to the following law X" = u, (x{9, £{")



Dynamics learning

Non equilibrium situations
— Equilibria: good description of system efficiency at steady-sate.
— But systems rarely operate at equilibrium, hence
— Prescriptive models: How do we drive system to eq.?
— Descriptive models: How would players behave in the game?

Goals of the work
— Define algorithm classes for which we can prove convergence

— Robustness to stochastic perturbations.
— Heterogeneous learning: different agents use different algorithms

— Convergence rates.

Related work

— Discrete time: Hannan consistency (Hannan 1957), Hedge
algorithm for two-player games (Freund 1999), regret based
algorithms: (Hart 2001), online learning in games (Cesa 2006)

— Continuous time: Potential games under dynamics with positive
correlation condition (Sandholm 20093, replicator dynamics in
evolutionary game theory (Weibull 1997), no-regret dynamics for
two player games (Hart 2001)



Problem formulation

Main problem

Define class of algorithms C such that

u € CVk = x5 x*

Important question: what is x’*?

T . - i

. La Eagadd r¥nifcae " A .

4 » ~ = &
A -~ ) : B A

N
4

population k

R A
p ~ x‘((t) = : :: orc
\ 1: for t € N do
|:,-FJ 2: Play a ~ xl((t)
HSl ) 3: Discover Eg(t)
O / Ek 4: Update x,((H-l) = uy (x,((t), Eg))

5: end for




Nash equilibrium

Write

x=(x1,...,XK) € AAL x ... x AAK
£(x) = (L1(x), ..., 2k(x))

Nash equilibria X'*

x* is a Nash equilibrium if for all k, paths in the support of x;° have minimal loss.
vx, (U(x*),x —x*) >0
’ A N
population k = '
Pt e :
\.n
t PR, e S S or
P v X‘(( ) . ‘Cc'.:na?-.. ‘ ® i
g '—-l-fx—d?_ \'.\_ e o % f VE
. , \f‘ \a S=Romone
D, g
A Wl O/;J, — ) I
= TS o SN P Chir
I:%,-L’*Fm% \_ == e
& / No incentive to deviate

from shortest path




Model 1: regret analysis

Interpretation of the regret and the convergence

— Cumulative regret models the comparison of playing over time the
best strategy %os_smle (without changing it), and comparing it to
the strategy obtained by the game.

— In the case of sublinear regret, the game converges on average
towards a Nash equilibrium

— Good for optimization purposes

— Bad for operational purposes (no guarantee on what the outcome
of the game is)

Cumulative regret

R,((t) = sup Z <X,((t) - Xkaek(x(t))>

()
“Online” optimality condition. Sublinear if limsup, = < 0.




Model 2: stochastic approximation

ldea:

— View the learning dynamics as a discretization of an ODE
— Study the convergence of the ODE

— Relate the convergence of the discrete algorithm to the
convergence of the ODE

In Hedge xa(,t+1) X x‘gt)e_"fg(at), take n: — 0.

Replicator equation [25] 0 - .
O O O
dX F . U d I - t. t,
Va e Ay, dta = xa ((€(x), x) — £3(x)) igure: Underlying continuous time
Definitions:

— Tt Discretization (in time)
— Xa Distribution of flow along one arc
— A Set of arcs for population k

Weibull, Evolutionary Game Theory, 1997



AREP: approximate replicator dynamics

ldea:

— View the learning dynamics as a discretization of an ODE
— Study the convergence of the ODE

— Relate the convergence of the discrete algorithm to the
convergence of the ODE

In Hedge x§t+1) X x‘gt)e_"fe(at), take n: — 0.

Replicator equation [25] 0 m S
O O——0
dX F . U d I - t. t,
Va € Ak, dta =15 (<£(X),X> . Ea(x)) igure nderlying continuous time

Discretization of the continuous-time replicator dynamics

X£t+1) . Xa(r)

e = X‘-(,-t) (<£(x(f)),x(t)> _ ga(x(t))) i U§t+1)

Benaim, Dynamics of stochastic approximation algorithms, 1999



AREP: approximate replicator dynamics

ldea:

— View the learning dynamics as a discretization of an ODE
— Study the convergence of the ODE

— Relate the convergence of the discrete algorithm to the
convergence of the ODE

Discretization of the continuous-time replicator dynamics

x‘-(,H_l) . X‘-(,t)

e = X‘-(,t) (<£(x(t))’x(t)> _ ga(x(t))) 4 U§t+1)

@ 7 discretization time steps.

) (U(t))tzl perturbations that satisfy for all T > 0,

. T2 t+1 —
llmTl_}oo maxTz:Zz-:sz_ ne<T H t=71 nt U( )H =0
1+ 9
(a sufficient condition is that 3g > 2: sup_ E ||[U||9 < oo and > n,.+2 < o0)



AREP: approximate replicator dynamics

ldea:

— View the learning dynamics as a discretization of an ODE
— Study the convergence of the ODE

— Relate the convergence of the discrete algorithm to the
convergence of the ODE, but no convergence rates

In convex potential games, under AREP updates, if n: /. 0 and > n:

= 00, then

x(t) 5 x* 3.

o Affine interpolation of x(t) is an asymptotic pseudo trajectory of ODE.

_——

-~

~
4

\ e
Ve

¢tk 2(X (k=2))} A

, x(l) S m(k_l))\\

X(k T’\‘\» :

% ‘o a
B (x()) /‘ \ /

~ -~

—_ =

@ Use f as a Lyapunov function



AREP: approximate replicator dynamics

ldea:

— View the learning dynamics as a discretization of an ODE
— Study the convergence of the ODE

— Relate the convergence of the discrete algorithm to the
convergence of the ODE, but no convergence rates

In convex potential games, under AREP updates, if n: | 0 and > n: = oo, then

x(t) 5 x* as.




Model 3: convex optimization

ldea:

— View the learning dynamics as a distributed algorithm to minimize
the function f.

— Allows us to analyze convergence rates.

Here:

— Class of distributed optimization methods: stochastic mirror
descent

minimize f(x) convex function

subjectto x€ X C RY  convex, compact set

Bregman Divergence

Strongly convex function

Dy (x,y) = ¥(x) —¥(y) — (V(y), x — y)




Approach 3: convex optimization

minimize f(x) convex function

subjectto x€ X C RY  convex, compact set

Algorithm 2 MD Method with learning rates (7;)
. for t € N do
observe #(t) ¢ Bf(x(f))
(t+1) — i (t) 1 (1)
X arg;rg/_r&(é ,X) + ntD”vL’(X’X )

L

end for

B

@ 7:: learning rate

° Dw:

Bregman Divergence

Strongly convex function

Dy (x,y) = ¥(x) —¥(y) — (V(y), x — y)




Approach 3: convex optimization

minimize f(x) convex function

subjectto x€ X C RY  convex, compact set

Algorithm 2 MD Method with learning rates (7);)

1: for t € N do

2:  observe ng) € 0 f(x(1)
. (t+1) . (1) 1 (t)

3 X, = argxrgggk <€k ,x> - " Dy, (x,x; ")

4: end for

@ 7:: learning rate

(*] Dw:

Bregman Divergence

Strongly convex function

Dy (x,y) = ¥(x) —¥(y) — (V(y), x — y)




Approach 3: convex optimization

minimize f(x) convex function

subjectto x€ X C RY  convex, compact set

Algorithm 2 SMD Method with learning rates (7;)
1: for t € N do
2:  observe @S{t) with E [E&t”}}_l] € Ok f(x(1)
3: x[((Hl) = arg min <f§f),x> -+ ,,?_1£<D¢k (x, x,Et))

XEXk

4: end for

@ 7. learning rate

] D¢:

Bregman Divergence

Strongly convex function

Dy (x,y) = ¥(x) —¥(y) — (V(y), x — y)




Convergence

@ To show convergence E [f(x(t))} — f*, generalize the technique of Shamir et
al. [22].

Convergence of Distributed Stochastic Mirror Descent

For nf = &, ax € (0,1),

] e log t
E [f(x t )] f*=0 ; tmin(ak,l—ak)

Non-smooth, non-strongly convex.

[22]Ohad Shamir and Tong Zhang. Stochastic gradient descent for non-smooth optimization:
Convergence results and optimal averaging schemes.

In ICML, pages 71-79, 2013

[12] Syrine Krichene, Walid Krichene, Roy Dong, and Alexandre Bayen. Convergence of heterogeneous

distributed learning in stochastic routing games.
In 53rd Allerton Conference on Commiinication Control and Combpiitine 2015



Summary

Distributed learning dynamics in routing games (t)
— Each player routes population k according to distribution p ~ x,
(corresponding to one OD pair) (t)

— At each iteration, the population k discovers their outcome ¥¢;,

— The routing of population k at the next step is subsequently
updated according to the following law X" = u, (x{%, £{")

Environment
. . Other agents
learning algorithm outcome
1 t
mE:Jr ) :u(mg),fi)) Ex( gtja—--:ﬁfi?)
Agent k

@ Regret analysis: convergence of x(t)

e Stochastic approximation: almost sure convergence of x(t)

@ Stochastic convex optimization: almost sure convergence, E [f(x(t))} — f*,
E [Dy(x*, x(t))] — 0, convergence rates.
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Summary : Matriochka problems e e s &

Faster
Route

[Samaranayake, Bayen, IEEE ITSC 2011, TR-C, 2012, ALANEX 2014, AATMO 2012]
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Summary : Matriochka problems .sé & &

Systems
Dynamics —

-
o= |
L ]

[Krichene, Reilly, Amin, Bayen, et al. IEEE TAC 2014, CDC 2014, Allerton 2013, CDC, 2012]



Systems :
Control Dynamics Sensing
Infrastructure Infrastructure
i) |
D Faster [
Route Lo )
Operator | R l Demand and | State
Interface Optimization State Forecast Estimation
E Controller E
- 8 T
Scenario
Human Playbooks
e [Suarez et al., IEEE TNCS, 2015; Reilly et
Input Demand al., JOTA 2015; IEEE TAC 2014, etc.]

Playbooks



Systems

Control . Sensing Output
, . . —
Infrastructure E?ynamlcs Infrastructure !
- x=f(x) ) § | |
‘ ‘ Faster :
0 Route o Dlant i
Operator Demand and State

enmmmmmn | Optimization |<4—

Interface State Forecast Estimation

Controller i

_________________________________________________________________________________________________

Scenario

Human Playbooks
ﬁ_-—_—___-....‘
e

Playbooks



Summary : Matriochka problems 6@

learning algorithm ] outcome
:EEGHI) —u (ﬂ?;(:)a git)) EE:)

[Krichene, Bayen, Drighes et al.NIPS 2015,
ICML 2014, ICML 2015, ICCPS 2015, ECC,
2015, SIAM 2015, IEEE TNCS 2016]




Summary : Matriochka problems e

US Smartphone Penetration

100%

M Penetration Other Il
™ Penetration Paim ll
™ Penetration Microsoft

Penetration Android

= Penetration BlackBerry

irens iPhone 5C
e aun
- ppl Launch
~ 93 Logistc Function
~ Predictive iPhone Share
Galaxy S il
s0% Launch
Droid
Launchy
First Ancoic
phone launch
25%

iPhone

BlackBorry | quneh
EA

Laggards
0% =
i eI
135% 4% aa% 6%
Adopter categorization on the basis of innovativeness

Smartphone explosion

learning algorithm

m}:+1) . mg:)! EE)

noise
1

nojse
1
Sysiems
Control yatea Senting Output
* Infrastructure Dynamics Infrastructure Tj—
x= LX)
Faster
Route
Sl
L

Landuse disruptions

| DTN 100 | State.
J [suurocecm‘ [ Estimation

Controller

>
03
(D
=
>

outcome
E(t]
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Summary: Research focus

Dynamics governed by nonlinear
and distributed dynamics

Multimodal, mode choice
Behavioral modeling
Automation

(De)centralized, distributed
sensing, control, optimization

Resilience
Cybersecurity

Infrastructure CPS

Non cooperative players ,

[Two sided] markets
Incentivization

Route choice models

MaaS system, shared economy

In grey: not covered in this talk

A

Feedback loops that integrate
humans and keep learning

Information aware DTA
Information forecast



Outline

1. General framework for traffic operations

1. Inference problems
1. Demand inference
2. Traffic estimation

2. Heterogeneous games
1. Heterogeneous game, Nash-Stackelberg solutions
2. Learning dynamics in repeated games

| 3. Other mobile sensor and data and CPS education |




Using smartphones as seismometers

IShake project
— One of the first shake monitoring apps on the iPhone (2010)
— Scaled up by SeismolLab with T-Mobile / Deutsche Telekon
— Several 100K downloads in first week of existence

nnnnnnnn

| SEND &

| Trial: 14177 B

START

Trial: 139 Phone: Vai 5} (_Praw ) Download Entire Trial ] (0K (Show Files )
| 23




Floating sensor network

Inverse modeling, data assimilation, inference, estimation
— Real-time, online (with streaming data)
— Running two dimensional shallow water models (LBNL REALM)
— Using Ensemble Kalman Filtering, statistical inference methods
— Running on 500 nodes of the Magellan / NERSC cluster at LBNL

UC Berkeley
Server

NERSC Cluster

' — _ S ' State estimation:
™ K T Modeling with
“Agly - «. Partial Differential Equations
GSM 4 "

"In situ" sensors: embedded in the
medium of interest

p River environment:
i Time-dependent Physical Processes

j /
Android Drifters




Floating sensor network

Experimental deployments
— 100 floating units motorized and passive

— Experimental deployments: Sacramento Delta (CA), Stillwater
(OK), Bordeaux (France)

e e e
== ;".\“"“’;fff/:'

—

P - |

3 T e &

&
A
e
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Vision-based and mobile/static sensing

Monitoring Alzheimer patients in memory care facilities and homes
— Homes: Android & SmartWatches, sensors: 18 patients
— Memory care facilities: cameras: 100 patients

Assisted Living Wing Data analytics server
' - > (cloud based)

. <>

= zzr Local processing = L
== [%°f  unit for video

L “ .. 7. transceiving and Remote human-in-the-
= detection loop response to
w 1PN alerts s &
‘ ] Database for historical

data mining and
analytics




Outline

1. General framework for traffic operations

1. Inference problems
1. Demand inference
2. Traffic estimation

2. Heterogeneous games
1. Heterogeneous game, Nash-Stackelberg solutions
2. Learning dynamics in repeated games

3. Other mobile sensor and data and|CPS education




CPS education

A changing time for many disciplines

— Disciplines based on physical sciences
— Civil engineering (structural, geotechnical, transportation)
— Environmental engineering (hydrodynamics, chemistry)
— Mechanical engineering (thermo., fluid mech.)

— Modeling-based disciplines
— Economics, behavioral science
— Epidemiology, physical and human geography

The National Academies of
SCIENCES * ENGINEERING * MEDICINE

REPORT

A 21ST CENTURY
CYBER-PHYSICAL SYSTEMS
EDUCATION

A




CPS education in CEE

Systems Engineering program (2003 — present)

— Within CEE, 6 faculty (3 emeriti)

— Initial vision:
— one “physical” discipline,
— one methodological discipline

— Initially a graduate program
— 100s graduate students since 2003 (MS, MEng, PhD)
— 20+ alums faculty (MIT, Cornell, GT, UMich, UIUC, Purdue)

— One fully integrated curriculum

re

) Systems
Domain Sciences

Automotive Control
Water Networking
Geotechnical Optimization
Aviation Signal Processing
Structural engineering Embedded Computing

Distributed Parameter




CPS education in CEE

Graduate education (student chooses 3 core out of 6 + 5 free)
— 2003: CE271: sensor and signals
— 2004: CE290: control and information manangement
— 2006: CE291: control of distributed parameter systems
— 2009: CE264: behavioral modeling
— 2012: CE263: scalable data analytics
— 2013: CE295: energy systems and control

Undergraduate education (one lower div. 2 core electives)
— 2003: CE191.: intro to systems analysis [optimization]
— 2013: CE186: design of cyber physical systems
— 2016: CES88: data science for smart cities AN INTRODUCTION

TO MATLAB® PROGRAMMING

AND NUMERICAL METHODS

In addition (undergraduate) i e

— E7: introduction to numerical
analysis and programming

— CE93: data analysis (statistics)




CEE systems vision for UG (and grad) curriculum

Field disciplines
— Environmental Engineering :
— Geotechnical Engineering Analytical
— Structural Engineering disciplines

— Material Science
— Transportation Engineering

ces W
systems

— Project Management
— Energy engineering

Data
science

Analytical disciplines
— Mathematical modeling
— Model based control
— Optimization
— Signal processing Berleley
— Economics

@berkeley

Data science
— Statistics
— M aC h | n e | e ar n | n g The Master of Information and Data Science Delivered Online From UC Berkeley
— Programming
— Architecture




Broader guestions and CEE links to IDSS

Societal dimensions
— Social and economic networks
— Human models (ex. mobility, energy)
— Markets (ex. energy, transportation)
— Environment (ex. incentivization)
— Infrastructure (ex. electrification)
— Economics (ex. airlines, freight)

CPS
systems

Changing landscapes
— Autonomy (incl. flight)
— Electrification
— Shared economy (two-sided markets)
— Rapid urbanization (land use)

Open questions (a few of many)
— Incentivization in networks (ex. transportation)
— Privacy (and security), for ex. in crowdsourcing
— Decision support systems for fully automated districts
— Connection and interactions of networks (ex. energy + water)



CEE systems vision for UG (and grad) curriculum
Field disciplines

— Environmental Engineering BOX 3.4

— One Model for 4-Year, 40-Course Undergraduate Degree in CPS
Geotechnical Engineering

— Structural Engineering Wath and Natural Science (10 coursee)

- Ma.terlal SC|en Ce + Differential Equations

+ Linear Algebra

Probability and Statistics

Logic

Physics | (Mechanics and Dynamics)
Physics Il (Electrical Circuits)
Chemistry or Biology

— Transportation Engineering
— Project Management
— Energy engineering

Discrete Math
A n a'l yt I C a'l d I S CI p I I n eS . ors cﬂ:ﬁt::;:uf:?mu?;séPS {Freshman Laboratory Coursa)

— Mathematical modeling  Computer Programming _

+ Data Structures and Algorithms
- M0d6|baSEd COntI’0| E Prﬂgramming_Ph'_.rs_it:al Systems
— Optimization . ModorBased Systom Design
— Signal processing o o st
—_— EC O n O m | CS +  Hesource-Aware Real-Time Computing

*  Control Systems
+  Dptimization
+ Digital Signal Processing

Data science
— Statistics
— Machine learning
— Programming

CYBER-PHYSICAL SYSTEMS

— Architecture EDUCATION




CEE systems vision for UG (and grad) curriculum
Field disciplines

. . . CPS-Related Courses in Current CE Curricula (3 courses)
— Environmental Engineering + Computing for Engineers |
- Geotechnical Engincering | ¢ S s s

. . Technical Electives (6 courses)
- M a.te” al SC | en C e Current CE curricula have few undergraduate elective courses that focus on

_ Tran S p 0 rtatl O n En g | n eerl N g CPS cqncgpts. If mdﬂsigr?ned. SOMme curmn_t elective courses could incorporate

CPS principles, examples include the following:

— PrOJ eCt Man ag em ent " Gm:-graphin::_ Informati_r:nn E‘n_.'slams_
Transportation Planning and Design
— Energy engineering

Infrastructure Rehabilitation

Environmental Geotechnology

Subsurface Characterization

Environmental Systems Design

Building Information Modeling

Conceptual Structural Design

Computational and Graphical Tools for Structural Engineearing
Structural System Testing and Model Correlation

Analytical disciplines
— Mathematical modeling
— Model based control
— Optimization

® ® ® ® ® ¥ ® ® ®

Proposed new CPS-centric electives:

- . Princkles of CPS.: Urban Plarming
Signal processing P
- ECOﬂOFﬂICS * Signals and Systems
« Sensor Networks for Civil Engineering S ms
. Mndel-Easnz’éﬂEmes Engin?:ering 9 Syee
Data SC | ence *  Structural Health Maonitoring
— Stat | St | CS Social Science, Economics, Humanities (8 courses)
— Machine learning

— Programming

CYBER-PHYSICAL SYSTEMS

— Architecture EDUCATION




Links with the Institute of Transportation Studies
OITSBerkele

sportation S udn-

|
WEPRC Gonnect

Pavement Research ‘ 24q1e | 1-%

Center " University of
Safe Transportation Callornii Osstar
Research and Education
Center on Economic
[ Competitiveness
FAA Consortiumin in Transportation —
Univ. of California Aviation Operations |;|
Trans. Center Research , (Eeeeee
[) M H SI'C SmartCities
Transportation Research
Partners for Advanced Sustainability Center (LBNL)
TecHnology research center
Centers of research within ITS M ISSIONS h

Research income each year,
leveraged from ~$1M in core funds

— Tech transfer
— Library

Faculty, Staff and Students S pans

— 7 Departments
— 4 Colleges

Successful start-up companies
in the last 5 years - L B N L




Inference and controldn routing game

e a

Alexandre Bayen

T Professor, EECS and CEE
! ¥ Dlrector Institute of Transportation Studies
‘ >, H Faculty Scientist, LBNL
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Nonlinear dynamics of DTA

Simulation time >

TRANSPORTATION RESEARCH

Newly generated vehicles ( I R ( U I_A R

T ‘ T T Dynamic Traffic
Assignment
To newly To newly To newly
generated or enroute generated or enroute generated or enroute A Primer
vehicles vehicles vehicles
U d‘ d U dr d
g Updated e Updated i Updated
condition shortest path condition shortest path condition shortest path

TRANSPORTATION RESEARCH BOARD
Instantaneous . Instantaneous Instantaneous
shortest path shortest path shortest path

Heterogeneous population
Travel time forecast — "Non-app-enabled” users
- : — App enabled users
— Historical :
— Some act on info
— Some do not

— Static (instantaneous)
— Historical (statistical) forecast

— DTA (model based) forecast — Varl%u__skvtersmnds oftsho_rtest time
— Information aware forecast (i.e. — DljKstra and extensions
incorporating user’s reaction to — SQTA
information) — Driver preferences

— Clock update



Finite-horizon Optimal Control Problem

Model predictive control formulation
— Nonlinear, nonsmooth, nonconvex optimization program
— Objective function: arbitrary velocity target on freeways
— Dynamics: LWR PDE, discretized by Godunov scheme
— Optimization:
— Adjoint based method

— ADMM
— BFGS
T-1 N N
Elelrl}zzf Uirt; Pit) Z (ui,T, pi,T) \
t 1 i=1 z
. Runmng Cost Terrm;;l Cost ' min J (u’ p)
subject to system dynamics: uclU

S s.t. H (u,p) =0

pit+1 =pit + (G (Pi-1,t Pi-1,t, Uist) —
G (pit, Pit1,t, Uit)) / |
Vi € [1, N],Vt € [1,T)] * Non-linear

* Non-smooth
* Non-convex



Control

Optimal control problem in freeway operations management

— Minimize arbitrary cost function with boundary control (inflow
at on ramps)

90 mi. T s
i S 1 (Max)
I - B
" = | |
.-:-h | I
0 ﬁh - |
. !
60 mi. . s
mi. E i
i Z’ R\ —93
------ . . N (Critical)
30 mi. i
R vehicles
T per mile per lane
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Application to the routing game

Figure: Example with strongly convex potential.

o Population 1: Hedge with n! = ¢t—1

|
K
[

o Population 2: Hedge with n?



Convergence on average
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Convergence on average

)-((t))

ba, (

Path losses .4, (x{)

T
~~
>
=
s
= =
B o=
ES IR ST
5E8
N N N
nn
(=]
S &8
- X -~ BN -
- G
S & &
[= T =V =W
.-
| ]
| [ |

[

N

0.5

(’Uo,'U4,'U5,‘U1) -

— path py = (vo,vs,v)

- - - path p;

T uonne|ndoyd

100

20 30 40 50 60 70 80

10

20 30 40 50 60 70 8 90 100

10

(vm Vs, Ul)

path po

(vo,v4,vs,71)

(vo,v1)

path p
- - -path ps

—— -

Y
]
)\
'
J
\
_‘
{
4
“
N

0.5

path py = (vo,vs,v1)

¢ uoilejndog

20 30 40 50 60 70 8 90 100

10



Routing game with strongly convex potential

(t)

Mass distributions Xp

Population 1

— path po = (vo,v4, v6,v1)
By pa't'h P = ('Uo,'l)4,'U5,’U1)
-= - path py = (vo,v1)

50 60 70 80 90

100

Population 2

—— path p3 = (v2,v3)
- - - path ps = (vg,v4,vs,v3)
- - - path ps = (vq,v4, Vg, v3)

0 10

20 30 40 50 60 70 8 90 100

Path losses £, (x(t))

S --=-

— path po = (vo,v4, Vs, V1)

- = -path p; = (vg,v1)

- - - path p; = (vo,v4,vs5,v1) |

100

—— path p3 = (v2, v3)
- path ps = (v2,v4,vs5,v3)
- - -path ps = ('02,1)4,’06,’03)
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Routing game with strongly convex potential

101

10°

1071

E [DKL(SE*, CE(T))]

104
10° 101 102
T

Figure: Distance to equilibrium.
For nf = i, ax € (0,1], E [ Dy (x*, x)| = O(%, t7)



Practical game implementation: field experiment

Idea of the game: study non-cooperative behavior of routing
applications “managers”

— As if Google was “playing against” Apple, INRIX etc.
— Study evolution of distribution over successive iterations

Path Previous cost Cumulative cost Weight n Current Flows  Previous Flows
Path0 0.911 17.921 ® o407 0.407
Path1 0.915 20.056 & 0.098 0.098
Path2 0.922 20.356 é 0.114 0.114
Path3 0.927 20.198 h 0.102 0.102
Path4 0.916 19.656 & 0.134 0.134
Path5 0.910 19.696 . 0.146 0.146
Show edge costs Clear edge costs
Previous Flows
0.450]
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Practical game implementation: field experiment

Idea of the game: study non-cooperative behavior of routing
applications “managers”

— As if Google was “playing against” Apple, INRIX etc.
— Study evolution of distribution over successive iterations

Each “manager” has knowledge
of the network



Practical game implementation: field experiment

Idea of the game: study non-cooperative behavior of routing
applications “managers”

— As if Google was “playing against” Apple, INRIX etc.
— Study evolution of distribution over successive iterations

Path Previous cost Cumulative cost Weight n Current Flows  Previous Flows

Path0 0.911 17.921 ® o407 0.407
024

Path1 0.915 20.056 0.098 0.098

Path2 0.922 20.356 0.114 0.114

Path4 0.916 19.656 0.134 0.134

Path3  0.927 20.198 h 0.102 0.102
@

Path5 0.910 19.696 0.146 0.146

Show edge costs Clear edge costs

Through an interface he/she can choose
the distribution of his/her flow on the network
(for the game: on one OD pair)



Practical game implementation: field experiment

Idea of the game: study non-cooperative behavior of routing
applications “managers”

— As if Google was “playing against” Apple, INRIX etc.
— Study evolution of distribution over successive iterations

Depending on the setting: each user can see a subset (or all) of:

- His/her costs at each iteration

- Cumulative costs (performance) over the games

- History of plays (i.e. how he/she allocated the flows previously)

Previous Cost Cumulative Cost Previous Flows
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Game process

(60,67,
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Learning how players learn

o We observe a sequence of player decisions (x(!)) and losses (£(1)).

@ Can we fit a model of player dynamics?

Mirror descent model

Estimate the learning rate in the mirror descent model

xt1) (1) = arg min <l7(t),x> + 1D,K,;_(x, x(1))
x€AAk n

v

Then d(n) = Dk (X(tT1) x(t+1) (1)) is a convex function. Can minimize it to estimate

(t)
n, - (F(lt)’gilz—m’”.)
|
—e i.(lt)
¢
S
1 ()
Y 300 7 7(t)
$ : O & Server —
t—1
@, 67,...)
l
— 0




Cost of each player (normalized by eq. cost)

ey ey
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Normalized cost’ t
(xk,é’k)
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Potential function f(x(*)) — £*

(@) — f(a*)
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Average of KL divergence

Average KL divergence between
— Predicted distributions
— Actual distributions

As a function of the prediction horizon h

1.2 . . .

—— Parameterized 7;

—— Previous 7,
Moving average 7,
Linear regression 7

1.0

Average Bregman divergence
o
(@)}

Prediction horizon A



