

Solving Large-Scale Multiperiod OPF Problems Using an AC-QP Algorithm

Jenny Marley University of Michigan jkfelder@umich.edu

Outline

- * Introduction
 - * Multiperiod Optimal Power Flow (OPF) Problem
- * AC-QP OPF Solution Method
- * Improved Initialization with an SOCP Relaxation
 - * An Illustrative Example
- * Conclusions

General Optimal Power Flow (OPF) Problem

$$\forall t \in \mathcal{T}:$$

$$\min C(P_g(t)) \leftarrow \cdots$$

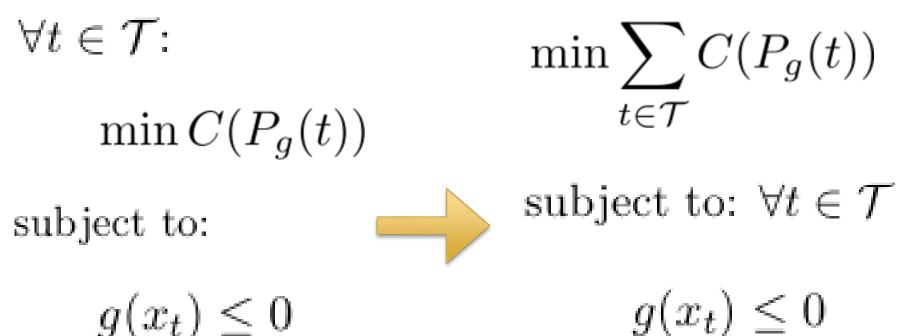
(Quadratic) Cost of Conventional Generation

subject to:

$$g(x_t) \le 0 \qquad \longleftarrow \\ h(x_t) = 0 \qquad \longleftarrow \qquad$$

Operational Limits

(AC) Power Flow Equations

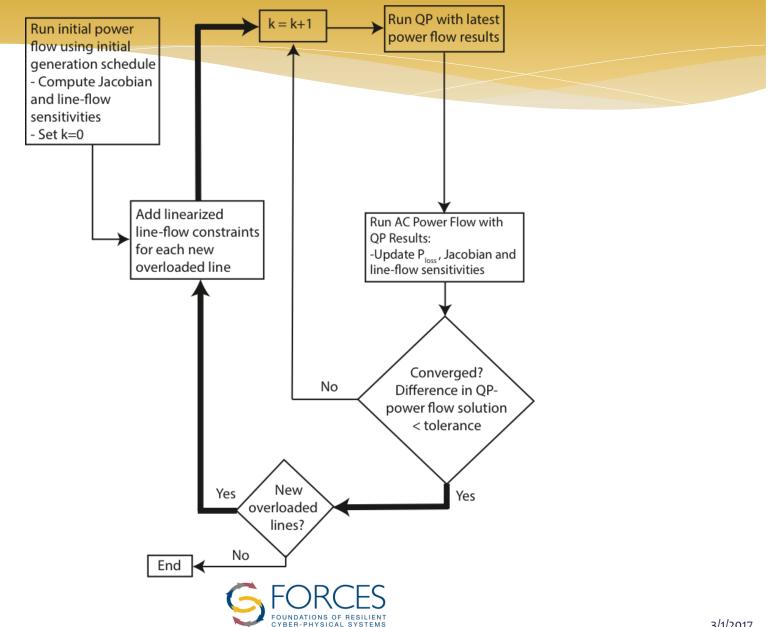

Modifications to Traditional OPF Problems

- * Wind generation
 - Zero-cost generators
- * Storage
 - Nonideal efficiencies
 - * Linear state of charge dynamic equations

$$\begin{aligned} \forall t \in \mathcal{T}: \\ b(t+1) &= b(t) + T_s \eta_c r_c(t) - \frac{T_s}{\eta_d} r_d(t) \\ b(T+1) &= b^{term} \end{aligned}$$

Storage → Multiperiod OPF

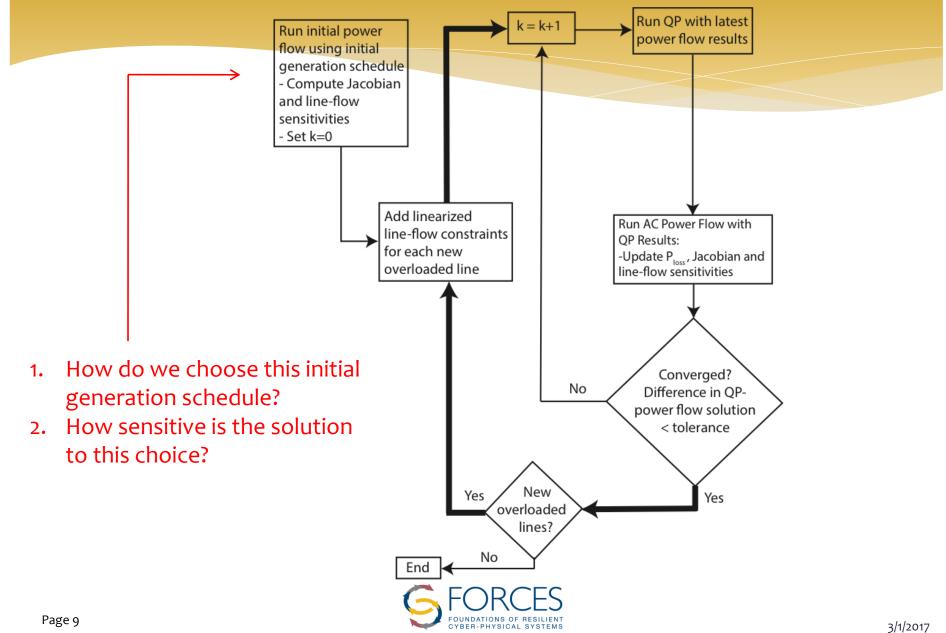
 $g(x_t) \leq 0$ $h(x_t) = 0$


 $h(x_t) = 0$

Overview of OPF Solution Methods

- 1. Quadratic program (QP) formulation, separate AC power flow to update losses (AC-QP OPF)
- 2. Quadratic program (QP), DC OPF
 - Piecewise-linear losses formulation
- 3. Convex Relaxations
 - Semidefinite program (SDP)
 - Second order cone program (SOCP)

AC-QP Algorithm Overview



Possible Challenges of the AC-QP OPF Method

- * Local minima
- Assessing quality of solution
- Guarantee of convergence
- * Convergence rate
 - * Execution time sufficiently fast for real-time applications?
 - * Timing results depend on the number of QP-power flow iterations.

Basic Algorithm Overview

Some Possible Initialization Methods

- 1. MatPower test case description (or other network description)
 - Assume storage & wind are initially unused.
- 2. DC-OPF
 - Losses are approximated as 3% of total load at each bus, including both demand & storage charging.
 - Assume voltage magnitudes are those given in the test case description.
- 3. SOCP Relaxation
 - Collaboration with Dan Molzahn (Argonne National Laboratory)

Idea: SOCP + AC-QP

SOCP

- In practice, scales well for large networks & moderately long optimization horizons
- When tight, gives globally optimal solution
 - * No guarantee of being tight
- Lower bound of globally optimal objective
- No guarantee of AC-feasible solution

AC-QP

- AC power flow & large QP's both scale well for large networks and long horizons
- May result in locally optimal solution
- No guarantee of quality of solution
- * AC feasible solution produced
- * No guarantee of convergence

An Illustrative Example

- * 4-hour horizon, 30-minute sampling time \rightarrow 8 time steps
- * Storage at 10% of nodes in each network
- * 60-70 wind nodes added to each network
- Improved quality of the AC-QP solution (% Cost Difference from SOCP Lower Bound):

Test Network	Case Description Init.	DC-OPF Init.	SOCP Init.
Pl-2383wp	0.30	0.80	0.22
PEGASE-2869	0.52	0.43	0.26
PL-3120sp	0.31	0.30	0.30
WECC	_	_	0.02

Example (Cont.)

* Improved convergence rate (# QP-Power Flow Iterations):

Test Network	Case Description Init.	DC-OPF Init.	SOCP Init.
PL-2383wp	8	5	4
PEGASE-2869	16	8	4
PL-3120sp	7	7	4
WECC	_	_	5

* Improved solution time (Seconds):

Test Network	Case Description Init.	DC-OPF Init.	SOCP Init.
PL-2383wp	90	74	64
PEGASE-2869	240	146	84
PL-3120sp	106	121	80
WECC	_	_	150

Conclusions

- * New use of an SOCP relaxation
- Method demonstrated on realistically large networks with storage and wind
- * Shown cases where the SOCP relaxation...
 - * Achieves significant execution time & convergence improvements
 - * Prevents the AC-QP OPF from reaching local optimum
 - * Gives a lower bound to assess quality of solution
 - Provides an initial operating point to run AC power flow where other methods fail
 - * Useful for actual network planning cases

jkfelder@umich.edu

Thank You, Questions?