

On Threshold Properties of the Optimal Policy for POMDPs on Partially Ordered Spaces

Erik Miehling — miehling@umich.edu Department of Electrical & Computer Engineering University of Michigan, Ann Arbor, MI, USA

FORCES - All Hands Meeting, Berkeley, CA — Aug 23-24, 2017

Motivation

- ❖ **Partially Observable Markov Decision Processes** (POMDPs) arise in many real-world settings where decisions need to be made over time and under uncertainty
- ❖ Finding an optimal policy is a notoriously difficult problem
- ❖ We aim to determine conditions such that the optimal policy has a nice form

What is a POMDP?

- \triangleleft State space, S
- *N* Action space, *U*
- $*$ Transition probabilities, p_{ij}^u
- \triangleleft Observation space, \mathcal{Y}
- \triangleleft Observation probabilities, r_{iv}^{u}
- \triangleleft Cost function, $c : \mathcal{S} \times \mathcal{U} \rightarrow \mathbb{R}$
- \triangleq Discount factor, $\beta \in (0,1)$

Solving the POMDP

- ❖ The sufficient information for making an optimal decision is summarized by a belief $\pi_t \in \Delta(S)$
- The goal is to find a policy $g : \Delta(S) \to \mathcal{U}$ to minimize the total expected discounted cost

$$
\mathbb{E}\left[\sum_{t=1}^T \beta^t c(s_t, u_t)\right]
$$

Solving the POMDP

❖ The sufficient information for making an optimal de^{\prime} is is summarized by a belief \sim A/O)

 ϵ the total expected discounted cost ϵ

 F_1 a policy have desirable structure? Under what conditions does the optimal

$$
\mathbb{E}\left[\sum_{t=1}^T \beta^t c(s_t, u_t)\right]
$$

Structured Policies

Structured Policies

First Order Stochastic Dominance

Definition (First Order Stochastic Dominance)

Given elements $\pi, \pi' \in \Delta(S)$, π is said to dominate π' with respect to first order stochastic dominance (FOSD), written $\pi \succeq_{st} \pi'$, if

$$
\sum_{j=i}^{n} \pi_j \ge \sum_{j=i}^{n} \pi'_j
$$

for all $i = 1, \ldots, n$.

Monotone Likelihood Ratio Order

Definition (Monotone Likelihood Ratio)

Given elements $\pi, \pi' \in \Delta(S)$, π is said to be greater than π' with respect to the monotone likelihood ratio (MLR), written $\pi \succeq_{lr} \pi'$, if

$$
\pi_i \pi'_j \geq \pi_j \pi'_i
$$

for all $i \geq j$.

[Lovejoy 1987, **Some Monotonicity Results for Partially Observed Markov Decision Processes**]

Partial Orders

- ❖ The existing orders assumed that the underlying space is totally ordered
- \bullet We are interested in spaces S that are partially ordered by \succeq , *i.e.* posets (S, \succeq)
- That is, for some states $s, s' \in S$, neither $s \succeq s'$ nor $s' \succeq s$ hold, such cases are denoted by $s \parallel s'$
- \bullet **Example:** under the element-wise partial order \succeq_e

 $(2,1) \succeq_e (1,1)$ $(1,2) || (2,1)$

Generalized FOSD Order

Definition (Generalized FOSD, White 1979)

Given elements $\pi, \pi' \in \Delta(S)$, π is said to dominate π' with respect to generalized first order stochastic dominance (GFOSD), written $\pi \succeq_{ast} \pi'$, if

$$
\pi I_K \geq \pi' I_K
$$

for all $K \in \mathcal{K} = \{K \subseteq S \mid s_i \in K, s_i \succeq s_j \implies s_i \in K\}.$

GFOSD Example

• Consider the state-space $S = \{s_1, s_2, s_3\}$ and partial order \succeq such that

> $s_3 \succeq s_1$ $s_3 \succeq s_2$ $s_1 \parallel s_2$

• We have $\pi \succeq_{gst} \pi'$ if and only if

$$
\pi_1 + \pi_3 \ge \pi'_1 + \pi'_3
$$

$$
\pi_2 + \pi_3 \ge \pi'_2 + \pi'_3
$$

$$
\pi_3 \ge \pi'_3
$$

G FORCES

Existing Work

The POMDP Model

- \triangleleft State space, S
- ❖ Action space,
- $*$ Transition probabilities, p_{ij}^u
- \triangleleft Observation space, \mathcal{Y}
- \triangleleft Observation probabilities, r_{iv}^{u}
- \triangleleft Cost function, $c : \mathcal{S} \times \mathcal{U} \rightarrow \mathbb{R}$
- \triangleq Discount factor, $\beta \in (0,1)$

The POMDP Model

- \ast State space, $S \longleftarrow (S, \succeq)$
- Action space, $\mathcal{U} \leftarrow \mathcal{U} = \{u_0(\text{null}), u_1(\text{reset})\}, u_1 \geq u_0$
- $*$ Transition probabilities, p_{ij}^u
- Observation space, $\mathcal{Y} \longleftarrow (\mathcal{Y}, \succeq_{\mathcal{Y}})$
- \triangleleft Observation probabilities, r_{iv}^{u}
- \triangleleft Cost function, $c : \mathcal{S} \times \mathcal{U} \rightarrow \mathbb{R}$
- \triangleq Discount factor, $\beta \in (0,1)$

The POMDP Model

- \ast State space, $S \longleftarrow (S, \succeq)$
- Action space, $U \leftarrow \mathcal{U} = \{u_0(\text{null}), u_1(\text{reset})\}, u_1 \geq u_0$
- \ast : Transition probabilities, p_{ij}^u :
- \triangleleft Observation space, $\mathcal{Y} \longleftrightarrow (\mathcal{Y}, \succeq_{\mathcal{Y}})$
- \triangleq : Observation probabilities, r_{iv}^u
- \triangleq : Cost function, $c : \mathcal{S} \times \mathcal{U} \rightarrow \mathbb{R}$!

 \ast [[]Discount factor, $\beta \in (0,1)$]

GMLR Order

Definition (Generalized Monotone Likelihood Ratio)

Given elements $\pi, \pi' \in \Delta(S)$, π is said to be greater than π' with respect to the generalized monotone likelihood ratio (GMLR), written $\pi \succeq_{qlr} \pi'$, if

$$
\pi_i \pi'_j \ge \pi_j \pi'_i \quad \text{for } s_i \ge s_j
$$

$$
\pi_i \pi'_j = \pi_j \pi'_i \quad \text{for } s_i \parallel s_j
$$

GMLR Example

- Recall the partially ordered state-space $S = \{s_1, s_2, s_3\}$ from before where $s_3 \succeq s_1$, $s_3 \succeq s_2$, and $s_1 \parallel s_2$
- \cdot Two comparable beliefs under \succeq_{qlr}

 $\pi = (0.2, 0.1, 0.7)$ \succeq_{glr} $\pi' = (0.4, 0.2, 0.4)$

GMLR Example

- Recall the partially ordered state-space $S = \{s_1, s_2, s_3\}$ from before where $s_3 \succeq s_1$, $s_3 \succeq s_2$, and $s_1 \parallel s_2$
- \cdot Two comparable beliefs under \succeq_{qlr}

 $\pi = (0.2, 0.1, 0.7)$ \succeq_{glr} $\pi' = (0.4, 0.2, 0.4)$

- The following beliefs are not comparable under \succeq_{glr}
	- $\pi = (1,0,0)$ $\pi_1 \pi_2' \neq \pi_2 \pi_1'$

	1 1 0 0 $\pi' = (0, 1, 0)$

GMLR-order Preserving Matrices

Definition (GTP₂ Matrix)

A stochastic matrix is termed generalized totally positive of order 2 (GTP₂) if for all $s_k \succeq s_l$

$$
p_{lj}p_{ki} - p_{kj}p_{li} \ge 0 \quad \text{for } s_i \succeq s_j
$$

$$
p_{lj}p_{ki} - p_{kj}p_{li} = 0 \quad \text{for } s_i \parallel s_j
$$

Example

GMLR-order Preserving Matrices

Definition (GTP₂ Matrix)

A stochastic matrix is termed generalized totally positive of order 2 (GTP₂) if for all $s_k \succeq s_l$

$$
p_{lj}p_{ki} - p_{kj}p_{li} \ge 0 \quad \text{for } s_i \succeq s_j
$$

$$
p_{lj}p_{ki} - p_{kj}p_{li} = 0 \quad \text{for } s_i \parallel s_j
$$

Example

 $s_1 \parallel s_2$

Proposition

If $\pi \succeq_{glr} \pi'$ then $\pi P \succeq_{glr} \pi' P$ if and only if P is GTP₂.

Conditions for Threshold Policy

Let $\pi \succeq_{qlr} \pi'$ and assume that

- 1. $c(s, u)$ is increasing in s on (S, \geq)
- 2. $c(s, u_1) c(s, u_0)$ is decreasing in s on (S, \geq)
- 3. P^u is GTP₂ for each $u \in \mathcal{U}$
- 4. $r_{iv}r_{jw} = r_{jv}r_{iw}$ for any $s_i || s_j$ in S , $y_v \succeq_{\mathcal{Y}} y_w$ in \mathcal{Y} or $s_i \succeq s_j$ in S, y_v $\|y \, y_w$ in \mathcal{Y}

5.
$$
r_i \succeq_{glr} r_j
$$
 for all $s_i \succeq s_j$

then $g_t^*(\pi) \geq g_t^*(\pi')$ for any t.

An Application in Security

❖ **Question**: at what point should the network be reset?

$$
(\mathcal{S}, \succeq) = (\mathcal{S}, \supseteq)
$$

$$
(\mathcal{Y}, \succeq_{\mathcal{Y}}) = (2^n, \supseteq)
$$

- $*$ Transition matrix is $GTP₂$
- ❖ Reasonable conditions on observation process

❖ Optimal policy is threshold

Summary

- ❖ We have derived conditions to ensure that the optimal policy takes a threshold form
- ❖ The results are applicable to any partially observable domain with a binary action space, $\mathcal{U} = \{u_0, u_1\}$

 u_0 : lets system continue uninterrupted

 u_1 : resets system back to the initial state with certainty

❖ Can be exploited computationally to design efficient algorithms

Acknowledgments

Special thanks to the following funding sources

❖ **NSF —** Foundations Of Resilient CybErphysical Systems (FORCES)

Grant: CNS-1238962

❖ **ARO MURI —** Adversarial and Uncertain Reasoning for Adaptive Cyber Defense: Building the Scientific Foundations

Grant: W911NF-13-1-0421

Questions?

Contact

umich.edu/~miehling/

miehling@umich.edu

