

On Threshold Properties of the Optimal Policy for POMDPs on Partially Ordered Spaces

Erik Miehling — <u>miehling@umich.edu</u>

Department of Electrical & Computer Engineering University of Michigan, Ann Arbor, MI, USA

FORCES - All Hands Meeting, Berkeley, CA – Aug 23-24, 2017

Motivation

- Partially Observable Markov
 Decision Processes (POMDPs) arise
 in many real-world settings where
 decisions need to be made over time
 and under uncertainty
- Finding an optimal policy is a notoriously difficult problem
- We aim to determine conditions such that the optimal policy has a nice form

What is a POMDP?

- * State space, S
- * Action space, \mathcal{U}
- * Transition probabilities, p_{ij}^u
- * Observation space, \mathcal{Y}
- * Observation probabilities, r_{jv}^u
- * Cost function, $c : S \times U \to \mathbb{R}$
- * Discount factor, $\beta \in (0, 1)$

Solving the POMDP

- * The sufficient information for making an optimal decision is summarized by a belief $\pi_t \in \Delta(S)$
- * The goal is to find a policy $g : \Delta(S) \to U$ to minimize the total expected discounted cost

$$\mathbb{E}\left[\sum_{t=1}^{T} \beta^{t} c(s_{t}, u_{t})\right]$$

Solving the POMDP

The sufficient information for making an optimal decision is a second base of the ballo of A (C)

* Th

the

Under what conditions does the optimal policy have desirable structure?

$$\mathbb{E}\left[\sum_{t=1}^{T} \beta^{t} c(s_{t}, u_{t})\right]$$

1Ze

Structured Policies

Structured Policies

First Order Stochastic Dominance

Definition (First Order Stochastic Dominance)

Given elements $\pi, \pi' \in \Delta(S)$, π is said to dominate π' with respect to first order stochastic dominance (FOSD), written $\pi \succeq_{st} \pi'$, if

$$\sum_{j=i}^{n} \pi_j \ge \sum_{j=i}^{n} \pi'_j$$

for all $i = 1, \ldots, n$.

Monotone Likelihood Ratio Order

Definition (Monotone Likelihood Ratio)

Given elements $\pi, \pi' \in \Delta(S)$, π is said to be greater than π' with respect to the monotone likelihood ratio (MLR), written $\pi \succeq_{lr} \pi'$, if

$$\pi_i \pi_j' \ge \pi_j \pi_i'$$

for all $i \geq j$.

[Lovejoy 1987, Some Monotonicity Results for Partially Observed Markov Decision Processes]

Partial Orders

- The existing orders assumed that the underlying space is totally ordered
- * We are interested in spaces *S* that are partially ordered by \succeq , *i.e.* posets (*S*, \succeq)
- * That is, for some states $s, s' \in S$, neither $s \succeq s'$ nor $s' \succeq s$ hold, such cases are denoted by $s \parallel s'$
- * **Example:** under the element-wise partial order \succeq_e

 $(2,1) \succeq_e (1,1)$ $(1,2) \parallel (2,1)$

Generalized FOSD Order

Definition (Generalized FOSD, White 1979)

Given elements $\pi, \pi' \in \Delta(S)$, π is said to dominate π' with respect to generalized first order stochastic dominance (GFOSD), written $\pi \succeq_{gst} \pi'$, if

$$\pi I_K \ge \pi' I_K$$

for all $K \in \mathcal{K} = \{ K \subseteq \mathcal{S} \mid s_j \in K, s_i \succeq s_j \implies s_i \in K \}.$

GFOSD Example

★ Consider the state-space $S = \{s_1, s_2, s_3\}$ and partial order \succeq such that

 $s_3 \succeq s_1$ $s_3 \succeq s_2$ $s_1 \parallel s_2$

* We have $\pi \succeq_{gst} \pi'$ if and only if

$$\pi_{1} + \pi_{3} \geq \pi_{1}' + \pi_{3}'$$

$$\pi_{2} + \pi_{3} \geq \pi_{2}' + \pi_{3}'$$

$$\pi_{3} \geq \pi_{3}'$$

$$\pi_{3} \geq \pi_{3}'$$

$$\int \mathsf{FORCES}$$

Existing Work

The POMDP Model

- * State space, S
- * Action space, \mathcal{U}
- * Transition probabilities, p_{ij}^u
- * Observation space, \mathcal{Y}
- * Observation probabilities, r_{jv}^u
- * Cost function, $c : S \times U \to \mathbb{R}$
- * Discount factor, $\beta \in (0, 1)$

The POMDP Model

- * State space, $S \longleftarrow (S, \succeq)$
- * Action space, $\mathcal{U} \leftarrow \mathcal{U} = \{u_0(\text{null}), u_1(\text{reset})\}, u_1 \ge u_0$
- * Transition probabilities, p_{ij}^u
- * Observation space, $\mathcal{Y} \longleftarrow (\mathcal{Y}, \succeq_{\mathcal{Y}})$
- * Observation probabilities, r_{jv}^u
- * Cost function, $c : S \times U \to \mathbb{R}$
- * Discount factor, $\beta \in (0, 1)$

The POMDP Model

- * State space, $\mathcal{S} \longleftarrow (\mathcal{S}, \succeq)$
- * Action space, $\mathcal{U} \leftarrow \mathcal{U} = \{u_0(\text{null}), u_1(\text{reset})\}, u_1 \ge u_0$
- * Transition probabilities, p_{ij}^u
- * Observation space, $\mathcal{Y} \longleftarrow (\mathcal{Y}, \succeq_{\mathcal{Y}})$

* Observation probabilities, r_{jv}^u

* Cost function, $c : S \times U \to \mathbb{R}$

* Discount factor, $\beta \in (0, 1)$

GMLR Order

Definition (Generalized Monotone Likelihood Ratio)

Given elements $\pi, \pi' \in \Delta(S)$, π is said to be greater than π' with respect to the generalized monotone likelihood ratio (GMLR), written $\pi \succeq_{glr} \pi'$, if

$$\pi_i \pi'_j \ge \pi_j \pi'_i \quad \text{for } s_i \succeq s_j$$
$$\pi_i \pi'_j = \pi_j \pi'_i \quad \text{for } s_i \parallel s_j$$

GMLR Example

- * Recall the partially ordered state-space $S = \{s_1, s_2, s_3\}$ from before where $s_3 \succeq s_1, s_3 \succeq s_2$, and $s_1 \parallel s_2$
- * Two comparable beliefs under \succeq_{glr}

 $\pi = (0.2, 0.1, 0.7) \qquad \succeq_{glr} \quad \pi' = (0.4, 0.2, 0.4)$

GMLR Example

- * Recall the partially ordered state-space $S = \{s_1, s_2, s_3\}$ from before where $s_3 \succeq s_1, s_3 \succeq s_2$, and $s_1 \parallel s_2$
- * Two comparable beliefs under \succeq_{glr}

 $\pi = (0.2, 0.1, 0.7) \qquad \succeq_{glr} \quad \pi' = (0.4, 0.2, 0.4)$

- * The following beliefs are not comparable under \succeq_{glr}
 - $\begin{aligned} \pi &= (1,0,0) & \pi_1 \pi'_2 \neq \pi_2 \pi'_1 \\ \pi' &= (0,1,0) & 1 & 1 & 0 & 0 \end{aligned}$

GMLR-order Preserving Matrices

Definition (GTP₂ Matrix)

A stochastic matrix is termed generalized totally positive of order 2 (GTP₂) if for all $s_k \succeq s_l$

$$p_{lj}p_{ki} - p_{kj}p_{li} \ge 0 \quad \text{for } s_i \succeq s_j$$
$$p_{lj}p_{ki} - p_{kj}p_{li} = 0 \quad \text{for } s_i \parallel s_j$$

Example

GMLR-order Preserving Matrices

Definition (GTP₂ Matrix)

A stochastic matrix is termed generalized totally positive of order 2 (GTP₂) if for all $s_k \succeq s_l$

$$p_{lj}p_{ki} - p_{kj}p_{li} \ge 0 \quad \text{for } s_i \succeq s_j$$
$$p_{lj}p_{ki} - p_{kj}p_{li} = 0 \quad \text{for } s_i \parallel s_j$$

Example

 $s_1 \parallel s_2$

Proposition

If $\pi \succeq_{glr} \pi'$ then $\pi P \succeq_{glr} \pi' P$ if and only if P is GTP₂.

Conditions for Threshold Policy

Let $\pi \succeq_{glr} \pi'$ and assume that

- 1. c(s, u) is increasing in s on (S, \succeq) 2. $c(s, u_1) - c(s, u_0)$ is decreasing in s on (S, \succeq)
- 3. P^u is GTP₂ for each $u \in \mathcal{U}$

4. $r_{iv}r_{jw} = r_{jv}r_{iw}$ for any $s_i \parallel s_j$ in S, $y_v \succeq_{\mathcal{Y}} y_w$ in \mathcal{Y} or $s_i \succeq s_j$ in S, $y_v \parallel_{\mathcal{Y}} y_w$ in \mathcal{Y}

5. $r_i \succeq_{glr} r_j$ for all $s_i \succeq s_j$

then $g_t^*(\pi) \ge g_t^*(\pi')$ for any t.

An Application in Security

 Question: at what point should the network be reset?

$$(\mathcal{S},\succeq) = (\mathcal{S},\supseteq)$$
$$(\mathcal{Y},\succeq_{\mathcal{Y}}) = (2^n,\supseteq)$$

- * Transition matrix is GTP₂
- Reasonable conditions on observation process

* Optimal policy is threshold 5 FORCES 5 FORCES

Summary

- * We have derived conditions to ensure that the optimal policy takes a threshold form
- * The results are applicable to any partially observable domain with a binary action space, $U = \{u_0, u_1\}$

 u_0 : lets system continue uninterrupted

 u_1 : resets system back to the initial state with certainty

Can be exploited computationally to design efficient algorithms

Acknowledgments

* Special thanks to the following funding sources

 NSF — Foundations Of Resilient CybErphysical Systems (FORCES)

Grant: CNS-1238962

 ARO MURI — Adversarial and Uncertain Reasoning for Adaptive Cyber Defense: Building the Scientific Foundations

Grant: W911NF-13-1-0421

Questions?

Contact

umich.edu/~miehling/

miehling@umich.edu

