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Urban Infrastructure—Co-Designing Incentives & Control

Societal-scale infrastructure systems are
networked cyber-physical systems tightly
integrated with a socio-economic layer

• that serve communities & support
economic interaction

• that learn and adapt from large,
heterogeneous sets of data

• in which decisions result from
co-design of distributed control and
incentives—information exchanges
are constrained by the cyber layer
which mediates between physical
system, human decision-makers,
governing bodies, and 3rd party
solution providers

2 / 36



1. Urban Mobility

Humans Data

• Transportation cyber-physical infrastructure

• Multi-Modal—Vehicles/ride sharing/mass transit/cyclists/pedestrians

• Sensing/Actuating Infrastructure—Loops, sensors, metering, traffic
control

• Mechanisms—Carpools, variable tolls, transit rebates, targeted
information, online routing apps, multi-sided mobility markets

Problems: serious traffic jams, ineffective/uncoordinated control, in-
dividualized solutions targeted for users, legacy systems, slow policy
change process
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Example 1—Traffic Congestion Management

Consider an integrated corridor management
scenario. . .

• we have models of the non-linear flow
dynamics and controllers (e.g., metering lights,
coordinated traffic signal control, special-use
lanes, variable speed limits)

• resilience: distance to failure

• consider a set of congestion pricing policies

Hard Problem: forecast travel demand & co-design a distributed con-
troller and adaptive pricing strategy to keep the system from failing
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2. Air Transportation

Humans Data

• Air traffic infrastructure

• Commercial and privately operated airplanes, unmanned air vehicles

• Sensing/Actuating Infrastructure—Air traffic control, regulatory
agencies

• Mechanisms—Takeoff/landing slots, jetway markets

Problems: fragile network susceptible to cascading & crippling delays,
challenges to safety and privacy with the rise of UAVs, legacy system,
slow policy change process

5 / 36



Example 2—Dependencies in Multi-Modal Transportation

Consider the impacts of road
congestion on flight delays. . .

• we have models of the
non-linear road and air traffic
dynamics

• welfare: minimal aggregate
passengers delays

• consider incentives in terms of
new itinerary offers/bids

Hard Problem: forecast travel demand & design dynamic incentives to
minimize delays
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3. Electric Grid

Humans Data

• Distribution and transmission infrastructure

• Control and sensing infrastructure—(micro-)PMUs, smart meters,
inverters

• Mechanisms—Demand response, energy markets, regulations

Problems: fragility and uncertainty (e.g., w/ integration of renew-
ables), legacy systems, slow policy change process
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Example 3—Electricity Demand Response

Consider the design of a dynamic demand
response system to mitigate the fluctuation
of generation from renewables. . .

• we have models of the non-linear power
flow

• performance: match supply and
demand

• consider a set of demand response
schemes; indirect load control through
pricing

Hard Problem: forecast aggregate demand & design strategies for re-
configuring networks to match supply and demand.
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Challenges

• Complex physical dynamics coupled with uncertainty (e.g., adversarial
input, random disturbances, partial data, humans in the loop. . . )

• Real-time interaction of people with physical dynamics based on the
(limited, inaccurate) information they have and their perceptions

• Behavior of people is not well characterized (either individually or on
aggregate); in addition learning must happen in closed loop

• Co-design, the simultaneous design of physical control and incentive
mechanisms, is a new field, the space of unintended consequences has
not been characterized—fairness and equity vs performance

• Policy and regulations—timescale for change is drastically different
than the rate at which users make decisions, data is collected, and
new technologies are being adopted

9 / 36



Challenges

• Complex physical dynamics coupled with uncertainty (e.g., adversarial
input, random disturbances, partial data, humans in the loop. . . )

• Real-time interaction of people with physical dynamics based on the
(limited, inaccurate) information they have and their perceptions

• Behavior of people is not well characterized (either individually or on
aggregate); in addition learning must happen in closed loop

• Co-design, the simultaneous design of physical control and incentive
mechanisms, is a new field, the space of unintended consequences has
not been characterized—fairness and equity vs performance

• Policy and regulations—timescale for change is drastically different
than the rate at which users make decisions, data is collected, and
new technologies are being adopted

9 / 36



Challenges

• Complex physical dynamics coupled with uncertainty (e.g., adversarial
input, random disturbances, partial data, humans in the loop. . . )

• Real-time interaction of people with physical dynamics based on the
(limited, inaccurate) information they have and their perceptions

• Behavior of people is not well characterized (either individually or on
aggregate); in addition learning must happen in closed loop

• Co-design, the simultaneous design of physical control and incentive
mechanisms, is a new field, the space of unintended consequences has
not been characterized—fairness and equity vs performance

• Policy and regulations—timescale for change is drastically different
than the rate at which users make decisions, data is collected, and
new technologies are being adopted

9 / 36



Challenges

• Complex physical dynamics coupled with uncertainty (e.g., adversarial
input, random disturbances, partial data, humans in the loop. . . )

• Real-time interaction of people with physical dynamics based on the
(limited, inaccurate) information they have and their perceptions

• Behavior of people is not well characterized (either individually or on
aggregate); in addition learning must happen in closed loop

• Co-design, the simultaneous design of physical control and incentive
mechanisms, is a new field, the space of unintended consequences has
not been characterized—fairness and equity vs performance

• Policy and regulations—timescale for change is drastically different
than the rate at which users make decisions, data is collected, and
new technologies are being adopted

9 / 36



Challenges

• Complex physical dynamics coupled with uncertainty (e.g., adversarial
input, random disturbances, partial data, humans in the loop. . . )

• Real-time interaction of people with physical dynamics based on the
(limited, inaccurate) information they have and their perceptions

• Behavior of people is not well characterized (either individually or on
aggregate); in addition learning must happen in closed loop

• Co-design, the simultaneous design of physical control and incentive
mechanisms, is a new field, the space of unintended consequences has
not been characterized—fairness and equity vs performance

• Policy and regulations—timescale for change is drastically different
than the rate at which users make decisions, data is collected, and
new technologies are being adopted

9 / 36



New Vistas in Urban Infrastructure

Vision
• understand the fundamental limits of performance, resilience, and

social welfare in next-generation infrastructure
• develop capabilities to assess and control the associated tradeoffs

between performance, resilience, and social welfare
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Big Data Analytics
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Big Data Analytics—Challenges

• Infrastructure data taxonomy
I spatio-temporal data available at

unprecedented scales
I coexistence of aggregated data and

individual agent traces
I missing data and data gaps

• Nature of the problems
I Decision making in streaming data
I Activity/state inference in closed-loop

(learning in closed loop with incentives)
I Privacy/disaggregation tradeoffs

• Computational/Complexity Issues
I nonlinearity, nonconvexity
I large scale nullspaces, biconvex

formulations
I computational architecture to reflect

mathematical nature of the problem
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Big Data Analytics—Key Features

• large numbers of distributed sensors are
generating real time data,

• real-time data needs to be analyzed
using provably correct algorithms

• it also needs to provide actionable
information in real-time.

Calls for a framework that (i) avoids actions based on stale data, (ii)
has the ability to intervene in a streaming data process for actuation,
(iii) allows human participation and has the ability to use aggregated
data for individual actor actuation, & (iv) performs anomaly predic-
tions as well as predicts future needs
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Data Disaggregation, Privacy and the Data Market

Can we develop scalable privacy-preserving disaggregation algorithms
that generalize across applications, & factor in spatio-temporal depen-
dencies?

• smart meters allow high fidelity consumption data
to be collected

Key Questions & Goals:

• ingest whole building energy signal & side
information–—e.g., billing data, weather, devices
and their brands, etc.)

• produce device level consumption—availability of
this information leads directly to privacy concerns,
not only about device consumption but also other
factors considered private

Goal: leverage aggregated data streams in privacy-preserving algo-
rithms for producing actionable information in real-time.
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Data Disaggregation, Privacy and the Data Market

Can we develop scalable privacy-preserving disaggregation algorithms
that generalize across applications, & factor in spatio-temporal depen-
dencies?

• broad use of smart devices allow bundles of
traces to be collected

Key Questions & Goals:

• ingest & fuse Call Data Records (CDRs)
and data from loops, GPS, bluetooth, etc.

• infer Nash (user equilibrium) & dynamic
traffic assignment inference from
CDR-inferred origin-destinations via convex
optimization

• privacy: flow inference without trajectory
inference?

Goal: leverage aggregated data streams in privacy-preserving algo-
rithms for producing actionable information in real-time.
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Scalable, Consistent Decisions via Hierarchical Control

Can we develop data-driven models with dynamics based models for
actuation of large control systems at scale?

• multi-modal demand data is increasingly
becoming available

Key Questions:

• design coordinated signal-timing policy
compatible with existing infrastructure?

• decision-support policies (e.g., queue
prioritization) consistent with today’s
procedures and coordination architecture,
and yet increase efficiency of operations

Goal: Co-design of control laws that operate (i) at multiple spatio-
temporal scales; (ii) on a system where demand is a function of incen-
tives; (iii) in a hierarchical control environment with a system model
learned in closed-loop
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Modeling & Learning

17 / 36



Modeling & Learning—Challenges

• Humans in the loop
I shape both demand and

supply
I they are often not perfectly

rational

• In-situ measurements
I difficult to isolate individual

treatment effects

• Shared autonomy
I human decision-makers are

coupled with autonomous
systems in many control
environments

I policy and control decisions
occur on very different
time-scales
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Modeling & Learning—Key Features

• Human beings and their communities
are core stakeholders

• Human beings are consumers,
participants, controllers. . .

• We need to understand:
I how to model human decision makers’

choices and actions
I how to design automation that shares

control authority with human
I the resulting behavior, with associated

risks, of the system as a whole

Calls for new framework for (i) modeling human decision-makers in
the midst of automation & (ii) provably correct design and risk mod-
els/insurance in shared autonomy

19 / 36



Causal Inference of Human Behavior

Can we develop novel techniques to understand individual effects of a
treatment?

Key Questions & Goals:
• Impossible to observe

the effect conditional on
both treatment and
non-treatment

• Randomized controlled
trial infeasible or
impractical

Goal: use the variation inherent in large high-frequency data sets to
perform causal inference.
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Causal Inference of Human Behavior

Can we learn plausible models of human behavior and preferences, with
theoretical foundations, by drawing on ”smart” infrastructure data?

• Humans tend to treat losses and gains differently & make decisions
based on reference points and distortions of event probabilities.

action

reward

observation

risk sensitive

decision-making

“internal state”

Key Questions & Goals:
• rational, utility maximization models tend not to capture these effects

Goal: leverage fine grained user choice data to develop (real-time) al-
gorithms for learning and designing incentives in closed loop
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Incentive Design
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Socio-Economic Layer & Incentive Design—Challenges

• New Smart Services
I enables shaping user behavior via

incentives for efficient resource utilization.
I e.g., demand response

• New Sharing Platforms/Economies
I cyber platforms for sharing resources and

governing transactions among
decentralized participants.

I e.g., ride-sharing

• Emerging Data Market
I enables detailed traces of user behavior

and consumption patterns potentially at
the expense of privacy

I necessitates design of incentives for fair
compensation of users for data access.

I e.g., privacy-aware data-sharing

23 / 36



Socio-Economic Layer & Incentive Design—Key Features

• multi-sided markets that necessitate
capturing incentives of multiple sides.

• Support high temporal resolution for
data collection and real-time incentives

• Both user and supply characteristics
change because of co-design of physical
layer & incentives

I users’ utilities change nonlinearly as a
function of incentives.

I supply changes as a function of
physical layer control

Calls for new game theoretic and economic models that (i) capture
stochastic, highly dynamic nature of interactions & (ii) couples with
big data analytics to enable learning user characteristics and responses
in closed loop (as a function of real-time incentives)
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Congestion Mitigation via Shaping Parking Demand

Can we leverage varied data streams which provide a partial view in
designing incentives to shape demand and mitigate congestion?

• studies show drivers lack knowledge of price and rely on past experience in
deciding where to park.

Key Questions & Goals:
• Develop algorithms for learning data-

informed models of parking &
congestion.

• Develop a new game-theoretic modeling
paradigm (queue-flow networks).

• User interests and incentives are tightly
coupled

• Use pricing AND information to shape
demand?

Goal: framework for designing incentives under uncertainty, learning &
designing in closed loop, and untangling user interests & incentives

25 / 36



Congestion Mitigation via Information

Can we use information (made available by the cyber infrastructure) to
shape demand and mitigate congestion?

• A number of users rely on GPS-based apps such as Waze that provide
real-time traffic information and promises to improve traffic congestion
experienced by users.

Key Questions & Goals:

• Does providing more information about
possible routes to a group of travelers lead
to reduced travel time for this group?

• How does heterogeneous information about
traffic incidents affect travelers’ equilibrium
route choices, costs and social welfare?

Goal: design (and efficient computation) of optimal “information struc-
tures” that can lead to socially efficient outcomes.
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Data Sharing—Contract Design with Strategic Sources

Can we design privacy-aware data sharing mechanisms that leverage
the value of information to balance the interests of differently invested
parties?

• Companies see the value of data for improving their services. Yet, data
exchanges may leak user information or expose intellectual property.

Key Questions :

• What are the appropriate vulnerability
metrics and objectives (e.g., balancing
fairness/privacy with optimization)?

• Can we design dynamic data sharing
mechanisms that balance these objectives?

• Are there cyber/physical constraints that
either facilitate or prevent data exchange?

Goal: framework for designing feasible incentive architectures for data
exchange compliant w/ constraints imposed by the cyber/physical
layer.
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Performance & Resilience
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Performance & Resilience—Challenges

• Fragility
I random faults or malicious attack
I misconfiguration, random faults, or

malicious attacks all may lead to
cascading failures

• Economics
I incentivizing investments in security
I meterizing risk and designing insurance

• Cyber-Physical Coupling
I detection and

isolation is difficult in
large scale systems

I multiple,
simultaneous attacks
originating in the
cyber or physical layer
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Performance & Resilience—Key Features (Desired)

• gurantee performance while providing resilience
against multiple, simultaneous attacks

• incentivizing secure & resilient user behavior

• operating through failure via reconfigurability

• learning resilience during operations

• provide quantifiable & verifiable guarantees on
safety & performance in hostile environments

• resilience with heterogeneous,
resource-constrained IoT devices

Calls for the development of a resilient design methodology for mar-
ket supported urban infrastructure which requires a rigorous analytical
framework to allow the co-design of infrastructures for resilient control,
humans in the loop, and incentive design.
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Modeling, Composing, and Mitigating Attacks

Can we model the impact of simultaneous and multi-stage attacks and
develop efficient mitigation strategies?

• cyber-physical threats are persistent, adaptive, & coordinated

Key Questions :

• Can we compose multiple
simultaneous & sequential attacks
via energy-based methods?

• Can we decompose observed
attacks & identify novel attack
primitives?

• Can we design mitigation strategies
with provable resilience,
performance and safety, within the
co-design framework?

Goal: framework for modeling, composing, decomposing, and mitigat-
ing attacks on interdependent infrastructure systems
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Learning Resilience Through Operations

In safety-critical systems, can we learn the behavior of users & adver-
saries?

• next-gen infrastructures are fragile and often unpredictable due to random
failures, humans in the loop, and adversarial attacks.

Key Questions :

• How do we learn accurate models of the
system in the presence of proactively
deceptive & stealthy adversaries?

• How do we ensure the system avoids
unsafe states during learning?

• Can we learn at scale in systems with
many components?

• How can we quantify the uncertainty of
the system state and adversary?

Goal: framework for developing safe learning algorithms, robust to vari-
ations in user behavior, disturbances, & adversarial obfuscation.
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Societal-Scale Infrastructures

• A resilient traffic system responsive to demand

• Reduce energy footprint of individual consumer

• A decentralized architecture with strategic
allocation of capacity-constrained resources

• UAV Traffic Management

• Resilient grid operation with increased visibility

• Incorporation of local, clean and carbon-neutral
resources
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Core Challenges & the Vision Looking Forward

Challenges

• Complex physical layer coupled with socio-economic layer

• Multi-timescale—Real-time, incomplete information interaction of
people with dynamics & slow policy/regulation (much slower than,
e.g., rate of technology adoption)

• Emerging field of co-design & understanding unintended
consequences—fairness and equity vs performance

Vision & Goals

• understand the fundamental limits of and interplay between
performance, resilience, and social welfare in next-generation
infrastructure

• develop capabilities to assess and control the associated tradeoffs
between performance, resilience, and social welfare
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Next-Generation Urban Ecosystem

Key areas with potential for methodological innovations applicable to
multiple domains
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