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Urban Infrastructure—Co-Designing Incentives & Control

Societal-scale infrastructure systems are
networked cyber-physical systems tightly

Socio-economic integrated with a socio-economic layer

Layer .
Y e that serve communities & support
economic interaction
e that learn and adapt from large,
Incentives/Markets heterogeneous sets of data

Distributed Control

e in which decisions result from

—information exchanges
are constrained by the cyber layer
Physical Layer which mediates between physical
system, human decision-makers,

-ﬁ + (((4’)) governing bodies, and 3rd party

solution providers
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1. Urban Mobility

Humans Data

e Transportation cyber-physical infrastructure
e Multi-Modal—Vehicles/ride sharing/mass transit/cyclists/pedestrians

e Sensing/Actuating Infrastructure—Loops, sensors, metering, traffic
control

e Mechanisms—Carpools, variable tolls, transit rebates, targeted
information, online routing apps, multi-sided mobility markets

Problems: serious traffic jams, ineffective/uncoordinated control, in-
dividualized solutions targeted for users, legacy systems, slow policy
change process
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Example 1—Traffic Congestion Management
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Funded 2015
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Consider an integrated corridor management el

scenario. . . s

T express
tolllane

e we have models of the non-linear flow
dynamics and controllers (e.g., metering lights,
coordinated traffic signal control, special-use
lanes, variable speed limits)

o . distance to failure ! ‘
e consider a set of congestion pricing policies 5\ @//
x &
I
y SEN

Hard Problem: forecast travel demand & co-design a distributed con-
troller and adaptive pricing strategy to keep the system from failing
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2. Air Transportation

Humans + Data

Air traffic infrastructure

Commercial and privately operated airplanes, unmanned air vehicles

Sensing/Actuating Infrastructure—Air traffic control, regulatory
agencies

Mechanisms—Takeoff/landing slots, jetway markets

: fragile network susceptible to cascading & crippling delays,
challenges to safety and privacy with the rise of UAVs, legacy system,
slow policy change process
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Example 2—Dependencies in Multi-Modal Transportation

Consider the impacts of road
LT / congestion on flight delays. ..

{JAN"28:29);

e we have models of the
non-linear road and air traffic
dynamics

e welfare: minimal aggregate
passengers delays

e consider incentives in terms of
new itinerary offers/bids

Hard Problem: forecast travel demand & design dynamic incentives to
minimize delays




3. Electric Grid

Humans (((éi)) Data

e Distribution and transmission infrastructure

e Control and sensing infrastructure—(micro-)PMUs, smart meters,
inverters

e Mechanisms—Demand response, energy markets, regulations

Problems: fragility and uncertainty (e.g., w/ integration of renew-
ables), legacy systems, slow policy change process

36



Example 3—Electricity Demand Response

Consider the design of a dynamic demand

response system to mitigate the fluctuation

of generation from renewables. . . Pk —fN L. N pomand
clipping  //+ \ esponse

Power

e we have models of the non-linear power
flow

valley
filling

e performance: match supply and Time
demand

e consider a set of demand response n /
&.V@B

schemes; indirect load control through
pricing

Hard Problem: forecast aggregate demand & design strategies for re-
configuring networks to match supply and demand.




Challenges

e Complex physical dynamics coupled with uncertainty (e.g., adversarial
input, random disturbances, partial data, humans in the loop...)
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Challenges

Complex physical dynamics coupled with uncertainty (e.g., adversarial
input, random disturbances, partial data, humans in the loop...)

Real-time interaction of people with physical dynamics based on the
(limited, inaccurate) information they have and their perceptions

Behavior of people is not well characterized (either individually or on
aggregate); in addition learning must happen in closed loop

Co-design, the simultaneous design of physical control and incentive
mechanisms, is a new field, the space of unintended consequences has
not been characterized—fairness and equity vs performance

Policy and regulations—timescale for change is drastically different

than the rate at which users make decisions, data is collected, and
new technologies are being adopted



New Vistas in Urban Infrastructure

Modeling
i | & Learning

Humans

Infrastructure
Systems Analytics

Vision
e understand the fundamental limits of performance, , and
social welfare in next-generation infrastructure
e develop capabilities to assess and control the associated tradeoffs

between performance, , and social welfare
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Big Data Analytics

Modeling
& Learning

.
Physical Layer ,
Distributed Y Y
Control ]
'
s 3 !
Infrastructure | ! Big Data
Systems : Analytics
1
1
Incentive :
. ——
Design 1
1
1
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Big Data Analytics—Challenges

e Infrastructure data taxonomy

>

>

spatio-temporal data available at
unprecedented scales

coexistence of aggregated data and
individual agent traces

missing data and data gaps

e Nature of the problems

>

| 4

>

Decision making in streaming data
Activity /state inference in closed-loop
(learning in closed loop with incentives)
Privacy/disaggregation tradeoffs

e Computational/Complexity Issues

>

>

nonlinearity, nonconvexity

large scale nullspaces, biconvex
formulations

computational architecture to reflect
mathematical nature of the problem

learning algorithm
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Big Data Analytics—Key Features

 Distributed Control | using provably correct algorithms

e it also needs to provide actionable
) . . . .
Physical Layer information in real-time.

Cx3%)

Calls for a framework that (i) avoids actions based on stale data, (ii)
has the ability to intervene in a streaming data process for actuation,
(iii) allows human participation and has the ability to use aggregated
data for individual actor actuation, & (iv) performs anomaly predic-
tions as well as predicts future needs

4 )
__| Socio-economic .
Layer
- . e large numbers of distributed sensors are
- ~ generating real time data,
N Incentives/Markets | | .
I e real-time data needs to be analyzed
—> —
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Data Disaggregation, Privacy and the Data Market

Can we develop scalable privacy-preserving disaggregation algorithms
that generalize across applications, & factor in spatio-temporal depen-

dencies?

e smart meters allow high fidelity consumption data
to be collected
Key Questions & Goals:

® ingest whole building energy signal & side
information—e.g., billing data, weather, devices
and their brands, etc.)

o produce device level consumption—availability of

this information leads directly to privacy concerns,

not only about device consumption but also other
factors considered private

&_.@\/«@’f

ol e

Goal: leverage aggregated data streams in privacy-preserving algo-
rithms for producing actionable information in real-time.
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Data Disaggregation, Privacy and the Data Market

Can we develop scalable privacy-preserving disaggregation algorithms

that generalize across applications, & factor in spatio-temporal depen-
dencies?

e broad use of smart devices allow bundles of
traces to be collected
Key Questions & Goals:
e ingest & fuse Call Data Records (CDRs)
and data from loops, GPS, bluetooth, etc.
e infer Nash (user equilibrium) & dynamic
traffic assignment inference from TEES

CDR-inferred origin-destinations via convex | s N
optimization Al T A
- <
e privacy: flow inference without trajectory , J=RBNY 2
inference? e

Goal: leverage aggregated data streams in privacy-preserving algo-
rithms for producing actionable information in real-time.
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Scalable, Consistent Decisions via Hierarchical Control

Can we develop data-driven models with dynamics based models for
actuation of large control systems at scale?

e multi-modal demand data is increasingly e
becoming available

Key Questions:

e design coordinated signal-timing policy @
compatible with existing infrastructure?

-
State. Bate Demand L System State
o e (e

il

e decision-support policies (e.g., queue
prioritization) consistent with today's —
procedures and coordination architecture, ]H{.H.I,”
and yet increase efficiency of operations R

Goal: Co-design of control laws that operate (i) at

; (i) on a system where demand is a function of incen-
tives; (iii) in a hierarchical control environment with a system model
learned in closed-loop
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Modeling & Learning

Physical Layer
Distributed Y i
Control ]
'
s 3 !
Infrastructure | ! Big Data
Systems : Analytics
1
1
Incentive :
) ——
D ]
__osen ) : Performance
------------------------------------------ d & Resilience
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Modeling & Learning—Challenges

e Humans in the loop
> shape both demand and
supply
> they are often not perfectly
rational
e In-situ measurements
» difficult to isolate individual
treatment effects
e Shared autonomy
» human decision-makers are
coupled with autonomous
systems in many control

environments N
» policy and control decisions /' ~
occur on very different , é’ 1
.4

time-scales



Modeling & Learning—Key Features

e Human beings and their communities
are core stakeholders

e Human beings are consumers,
participants, controllers. ..

e We need to understand:
> how to model human decision makers'
choices and actions
> how to design automation that shares
control authority with human
> the resulting behavior, with associated
risks, of the system as a whole

( ) )
N Incentives/Markets | |

—>| Distributed Control
\_ J

s N

Socio-economic
Layer

\_ J

Physical Layer

B % S62)

Calls for new framework for (i) modeling human decision-makers in
the midst of automation & (ii) provably correct design and risk mod-

els/insurance in shared autonomy
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Causal Inference of Human Behavior

Can we develop novel techniques to understand individual effects of a
treatment?

Wholesale Market Q
Key Questions & Goals: ™~ -
: Scheduling citi
e Impossible to o_b.serve Coordinator (SC) <~eor
the effect conditional on ]! Load Serving
o
both treatment and & Entity (LSE)

non-treatment
e Randomized controlled

trial infeasible or < \\ 2 :
h\ﬂ‘l Ry < g o l&\l
impractical ’ * >

Residential Customers

Demand Response .l
Provider (DRP) (2

T N

Goal: use the variation inherent in large high-frequency data sets to
perform causal inference.

20/36



Causal Inference of Human Behavior

Can we learn plausible models of human behavior and preferences, with
theoretical foundations, by drawing on "smart” infrastructure data?

e Humans tend to treat losses and gains differently & make decisions
based on reference points and distortions of event probabilities.

“internal state”

\ * reward w" mwﬂJ“;m %
. T
action » & éﬁn”ma?‘ﬁ .

- T
[tk
“WMA‘I&%%?A 3 Dt

risk sensitive

decision-making

fobservation

Key Questions & Goals:
e rational, utility maximization models tend not to capture these effects

Goal: leverage fine grained user choice data to develop (real-time) al-
gorithms for learning and designing incentives in closed loop
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Incentive Design

Modeling
& Learning

Distributed
Control

(Infrastructure |
Systems

Incentive

Design
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Socio-Economic Layer & Incentive Design—Challenges

e New Smart Services

» enables shaping user behavior via
incentives for efficient resource utilization.

» e.g., demand response

¢ New Sharing Platforms/Economies
» cyber platforms for sharing resources and
governing transactions among
decentralized participants.

» e.g., ride-sharing
e Emerging Data Market

» enables detailed traces of user behavior
and consumption patterns potentially at

the expense of privacy

> necessitates design of incentives for fair
compensation of users for data access.
> e.g., privacy-aware data-sharing

Demand
Response

peak Newnen
clipping  /+* AR

Power

valley
filling

Time

\_/
Platform
8

.
.
- Data
Marketplace
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Socio-Economic Layer & Incentive Design—Key Features

4 N
Socio-economic e multi-sided markets that necessitate

Layer capturing incentives of multiple sides.
\ J

e Support high temporal resolution for
data collection and real-time incentives

s . \
N Incentives/Markets | |

e Both user and supply characteristics
—>| Distributed Control [ change l_)ecauge of co-design of physical
\ / layer & incentives

N » users’ utilities change nonlinearly as a
Physical Layer function of incentives.
— F=N f (((17’)) < > supp!y changes as a function of
e ) physical layer control

Calls for new game theoretic and economic models that (i) capture
stochastic, highly dynamic nature of interactions & (ii) couples with
big data analytics to enable learning user characteristics and responses
in closed loop (as a function of real-time incentives)
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Congestion Mitigation via Shaping Parking Demand

Can we leverage varied data streams which provide a partial view in
designing incentives to shape demand and mitigate congestion?

e studies show drivers lack knowledge of price and rely on past experience in
deciding where to park.

Key Questions & Goals:
o Develop algorithms for learning data-

informed models of parking & Q? X
congestion. O
e Develop a new game-theoretic modeling u \ A
paradigm (queue-flow networks). = T
e User interests and incentives are tightly n @ O
coupled driving queue .
e Use pricing AND information to shape
demand?

Goal: framework for designing incentives under uncertainty, learning &
designing in closed loop, and untangling user interests & incentives
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Congestion Mitigation via Information

Can we use information (made available by the cyber infrastructure) to
shape demand and mitigate congestion?

e A number of users rely on GPS-based apps such as Waze that provide
real-time traffic information and promises to improve traffic congestion

experienced by users.

Key Questions & Goals: g T .
o Does providing more information about
possible routes to a group of travelers lead
to reduced travel time for this group?
e How does heterogeneous information about
traffic incidents affect travelers’ equilibrium
route choices, costs and social welfare? Sef o

Goal: design (and efficient computation) of optimal
that can lead to socially efficient outcomes.
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Data Sharing—Contract Design with Strategic Sources

Can we design privacy-aware data sharing mechanisms that leverage
the value of information to balance the interests of differently invested
parties?

e Companies see the value of data for improving their services. Yet, data
exchanges may leak user information or expose intellectual property.

Key Questions :

$
e What are the appropriate vulnerability p \

metrics and objectives (e.g., balancing p =

fairness/privacy with optimization)? 2
e Can we design dynamic data sharing

mechanisms that balance these objectives? ¢ AV
° Are there_;yber/physical constraints that - MarE:ttSIace

either facilitate or prevent data exchange?

Goal: framework for designing feasible incentive architectures for data
exchange compliant w/ constraints imposed by the cyber/physical
layer.
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Performance & Resilience

Modeling
& Learning

Distributed
Control

(Infrastructure |
Systems

Incentive

Design

28 /36



Performance & Resilience—Challenges

o Fragility e Cyber-Physical Coupling
» random faults or malicious attack » detection and
» misconfiguration, random faults, or isolation is difficult in
malicious attacks all may lead to large scale systems
cascading failures > multiple,
e Economics simultaneous attacks
» incentivizing investments in security originating in.the
» meterizing risk and designing insurance cyber or physical layer

False data injection

Distributed ¢

Control

DoS attack ‘1,_
N

 Resource depletion

lData poisoning

Big Data
Analytics

Infrastructure
/ Systems

b DoS fCascadingfaiIur

Insider threats Incentive
Design

Collusion attack

Misinformation=»| Humans

I Data exfiltration

N Actuator
compromise
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Performance & Resilience—Key Features (Desired)

(" )

Socio-economic
Layer

\ J

Physical Layer

( 2 )
N Incentives/Markets | |

Distributed Control ||
\_ J

CEIZN

gurantee performance while providing resilience
against multiple, simultaneous attacks

incentivizing secure & resilient user behavior
operating through failure via reconfigurability
learning resilience during operations

provide quantifiable & verifiable guarantees on
safety & performance in hostile environments

resilience with heterogeneous,
resource-constrained loT devices

Calls for the development of a resilient design methodology for mar-
ket supported urban infrastructure which requires a rigorous analytical
framework to allow the co-design of infrastructures for resilient control,
humans in the loop, and incentive design.
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Modeling, Composing, and Mitigating Attacks

Can we model the impact of simultaneous and multi-stage attacks and
develop efficient mitigation strategies?

e cyber-physical threats are persistent, adaptive, & coordinated

Key Questions :

e Can we compose multiple
1 1 ’ ;ED it Decomposition
simultaneous & sequential attacks & Composttion ecomposi
. A

via energy-based methods?
° Can we decompose Observed Individual attacks Composedattackmode\
attacks & identify novel attack

primitives? 7 Qlc? : ( .
e Can we design mitigation strategles%A | o

with provable resilience, it of Effcient mitgaton of M.t.gam,n entified
performance and Safety Wlth in the individual attacks composed attacks attack primitives
co-design framework?

Decomposed attack
prlmlllves

Goal: framework for modeling, composing, decomposing, and mitigat-
ing attacks on interdependent infrastructure systems
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Learning Resilience Through Operations

In safety-critical systems, can we learn the behavior of users & adver-
saries?

e next-gen infrastructures are fragile and often unpredictable due to random
failures, humans in the loop, and adversarial attacks.

Key Questions :

# Artack g ;;égz_g; opservedimpact, data - @ How do we learn accurate models of the
e i system in the presence of proactively
l deceptive & stealthy adversaries?
-—— e How do we ensure the system avoids
unsafe states during learning?
Deception 2 e Can we learn at scale in systems with
% |tearning many components?
e How can we quantify the uncertainty of
the system state and adversary?

Goal: framework for developing safe learning algorithms, robust to vari-
ations in user behavior, disturbances, & adversarial obfuscation.
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Societal-Scale Infrastructures

o A resilient traffic system responsive to demand

-

Urban
Mobility

e Reduce energy footprint of individual consumer

e A decentralized architecture with strategic
allocation of capacity-constrained resources

e UAV Traffic Management

e Resilient grid operation with increased visibility

Air
Transport e Incorporation of local, clean and carbon-neutral

resources
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Core Challenges & the Vision Looking Forward

Challenges
e Complex physical layer coupled with socio-economic layer

e Multi-timescale—Real-time, incomplete information interaction of
people with dynamics & slow policy/regulation (much slower than,
e.g., rate of technology adoption)

e Emerging field of co-design & understanding unintended
consequences—fairness and equity vs performance
Vision & Goals
e understand the fundamental limits of and interplay between

performance, , and social welfare in next-generation
infrastructure

e develop capabilities to assess and control the associated tradeoffs
between performance, , and social welfare
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Next-Generation Urban Ecosystem

Key areas with potential for methodological innovations applicable to
muIt|pIe domains

Modeling
& Learning
of humans & L
infrastructure 1 prediction
g \ : disaggregation
Infrastructure | ! Big Data privacy
| Systems | | Analytics  fanomaly detection
1
1
---------- == metrizing resilience
"""""""""" " “unintended consequences:
~ 1ve L] . 3
Incentive — real-time recovery
]
]
1

Design
io- H - - ) Performance
.......................................... & Resilience

new services & platforms
information architectures

optimization v. fairness
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