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theory and methods
without tools
remain speculations
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1. Background
o Goals

o Theory
© Validation Agenda
2. Integrated Tool Suite
o Functional Architecture
o WebGME-FORMULA Integration
© Deployment Architecture
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Notional Architecture

Functionalities
Policies

rrvent viotation
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Physical Systems/Resources
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The system-level synthesis problem for information flows in
CPS:

Derive specification for the behavior of the system components that will
be implemented using networked computing

Derive a functional model for the information architecture and
componentize the system

Select computing/networking platform

Derive deployment model assigning components of the information
architecture to processing and communication platforms

Generate code for software components and derive WCET and WCCT
Perform timing analysis

Making security part of system-level co-design (correct-by-
construction)
Co-design of functionality, performance, timing and security
Our goal is to address security requirements as part of the design trades
embedded in the system-level design process

(‘ FORCES
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Synthesis Problem

\A

* How to map a logical Information Architecture (components +
information flows) on a physical Platform Architecture such that

o Functional requirements (the information architecture)
o Performance requirements (timing)
o Security requirements (confidentiality and integrity)

are satisfied simultaneously?
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Modeling language suite v
(behavior, information flows, SW components, architecture,
timing, platform, deployment) - reuse previous work as example

Security Requirement Modeling v
(need to be composable with other modeling aspects)

Common Semantic Domain and Formal Framework v
(functional, performance and security models need to be
anchored to a semantic domain suitable for synthesis)

Synthesis Framework and Co-design flow v/
(mapping system-level synthesis problem on the formal
framework and tools)

Integrated Tool Suite and Validation
(target domain rich enough for testing the co-design tool suite)

OOOOOOOOOOOOOOOOOOOOOO
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Security Concerns Addressed

*|Integrity attacks
- Manipulate data (value, timestamp, source identity,..)

“| Confidentiality attack
- Leak critical data to unauthorized persons/systems

“ Integrity and confidentiality restrictions impose constraints on
information flows.
- How to model these restrictions?

- How to integrate these restrictions with others (functional and
timing) and formulate a co-design problem?

Pageto yo ¥ FOUNDATIONS OF RESILIENT
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Decentralized Label Model (DLM) for Information

Flow Control

+ Myers, Liskov (1997): Introduced security-typed languages by
labeling variables with information flow security policies

+ Method was developed for programming languages, the result is
Jif, a security-typed version of Java.

* DLM provides mechanism for static/dynamic type checking of
security [abels in information flows to detect policy violations.

“ Example: Jif, a security-typed version of Java
“ Introduce security-types in modeling languages
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Security Type Propagation Rules

T ——

« Propagation rule-1 (restriction):

vodule N (E-—=-
L,E L,

value

owners(L;) € owners(L,)
Yo € owners(L,),readers(L,,0) 2 readers(L,, 0)
(L, has more readers and fewer owners than L,)

“ Propagation rule-2 (join):

owners(L,;UL,) = owners(L;) U owners(L,)

readers(L,LUL,,0) = readers(L,,0) Nreaders(L,,0)

(join L, and L, is the least restrictive label that maintains
L, is the join of L, and L, all the flow restrictions specified by L, and L))

L3 = L1 ULZ
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Policies and Labels in FORMULA

T e

A policy consists of an owner principal and a set of allowed reader principals:
owner: readerl reader2

A label is a (possibly empty) set of policies:
L = { policyl; policy2; ...}

Our encoding views a label as a tree where the label's identifier is the root,

the policy owners make up the second level, and the corresponding readers
make up the third level :

Label ::= new (name:String).
Policy ::= new (lbl:Label, owner:Principal).
Reader ::= new (pl:Policy, reader:Principal).

Page14 ya ¥ FOUNDATIONS OF RESILIENT
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Propagation Rules Examples

T e

We can compute the effective readers set for each label:

EffReader (1lbl, reader) :-

1bl is Label, reader is Principal, no CantRead(lbl, reader).
CantRead(pl.1lbl, r) :-

pl is Policy, r is Principal,
no { r' | ActsForTR(r, r'), Reader(pl, r') }.

We can compare the restrictiveness of labels based on their effective reader sets:

AtLeastAsRestrictive (1bll, 1bl2) :-
1bll is Label, 1lbl2 is Label,
no { x | EffReader (1lbll, x), CantRead(lbl2, x) }.

We can also “propagate” policies by computing the join (]]) of two labels: the
least restrictive label that is at least as restrictive as both labels.

@) FORCES
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Validation of the System-level Design

Workflow
el

— GME Multimodel
Code Generation Platform
SW Comp Model > Code
HW Arch Model
Deployment Model l
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Deployment Model | FORMULA Export
DOT CVRIA l
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FORMULA [ SOUBTRDE | | Timing
Encoding T Verification

Propagate Labels,
Check System Outputs, _
Check Bus Communication, Implementation

Synthesize Deployment
Model
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DOT CVRIA

MODEL
Database
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from WebGME

1. Domain Specific approach
2. Domain Independent approach

(FORMULA)

Model

Meta

WebGME Meta
Language

FORMULA
Translator

WebGME Plugin

framework

pecifications

Domain Specific

FORMULA Specification

2866

Ll_

Domain Independent

FORMULA Specification

Lr
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Formal analysis

* Verification

¢ Constraint checking

* Model queries
Model transformation
Partial model solving
Model synthesis
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« Domain specific FORMULA models can be generated from the domain independent specification

* By FORMULA model transformation (Domain Specifier Transformation)

* (Can be slow process (One CVRIA application, with 839 nodes and 480 connections: ~145 sec)
* OR generate the domain specific representation by WebGME plugin framework (JavaScript)
* If needed, compare the outputs of the plugin and the FORMULA transformation

WebGME

Domain Specific

FORMULA Specification Correctness Checking

EEEREEE

Domain Independent
FORMULA Specification

28866

Domain Specific

FORMULA Specification

Domain Specifier
Transformation

=2B8B8E

EEEERE
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Queries

Metamodel

WebGME
FORMULA Editor Model Editor
. Translate
Transformations Instance model
Translate

Constraints

WebGME Meta
Language
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Results of WebGME -> FORMULA Translation

(Metamodel)

domain CVRIA

{
_ Physical_Object ::= new (id:String,
base: any _ Physical Object + {NULL},
parent: any GMENode + {NULL},
“Application B attributes: Attr__Physical Object + {NULL},
e ApplicationObject & pointers: {NULL}).
_; _ -‘-’SP-E-IET_H; ] Yy ;DDOD]:;TDIW imegsr
| T t | Ow-g:ﬁ%ﬂggﬁ::; __Support_System ::= new (id:String,
| L _ N .- base: any __ Support_System + {NULL},
+ﬁ:'|£::%a +A1l'::1:::yﬁsu t...‘."'."?!“.’!-'!'.‘?..f +M":s:;"¥ﬁsa T ° parent: any GMENode + {NULL},
TOCUTIANIS | |TSONTIANTS | |1 CONTTANTS. | [OOSR g Totkete: siina ! ] attributes: Attr__ Support_System + {NULL},
o pointers: {NULL}).
InformationFlow %t Physical Port £
rowon T eI e g 2 __Vehicle ::= new (id:String,
namei sting| SO ~|+ CONSTRAINTS __ base: any _ Vehicle + {NULL},
e L parent: any GMENode + {NULL},

attributes: Attr__Vehicle + {NULL},
pointers: {NULL}).

// Attributes

S " consTants [ | [+ consTaas Attr_ Vehicle ::= new (name:String, PObjectID:String).
. ;’ Attr__Physical_Object ::= new (name:String, PObjectID:String).
n;gQuu Attr__Support_System ::= new (name:String, PObjectID:String).
RS // Unions, represent inheritance
SINASPECTS Physical_Object ::= PONoAppObj + POWithAppObj + _ Physical_Object.
PONoAppObj ::= Support_System + __ PONoAppObj.
POWithAppObj ::=Field_Equipment + Center + Traveler_Device + Vehicle +
__ POWithAppObj.
Support_System ::= _ Support_System.
Vehicle ::= _ Vehicle.
}
Page 24 3 CYBER-PHYSIGAL SYSTEMS 3/1/2017



* FORMULA doesn't support inheritance, but supports algebraic data types (equivalent with mathematical
unions)
* Unions can simulate multiple-inheritance and interfaces

Fco ¥

+ ATTRIBUTES
name:
+ CONSTRAINTS

string

+ ASPECTS __PONoAppObj::= new ([params]).
__POWithAppObj::= new ([params]).
__Support_System::= new ([params]).
Physical Object £F __Center::= new ([params]).
+  ATTRIBUTES __Traveler_Device::= new ([params]).
PO GjectiD: string __Field_Equipment::= new ([params]).
nama: sfring __Vehicle::= new ([params]).
+ CONSTRAINTS
+ ASPECTS FCO ::= Physical_Object + __FCO.

POMNocAppOb] &F

+ ATTRIBUTES

+ ASPECTS

+ CONSTRAINTS

|

domain CVRIA

{
__FCO::= new ([params]).

_ Physical_Object::= new ([params]).

Physical_Object ::=

PONoAppObj ::= Support_System + _ PONoAppObj.
POWithAppObj £} POWithAppObj ::= Field_Equipment + Center +
+  ATTRIBUTES Traveler_Device + Vehicle
CONSTRAINTS + __POWithAppObj.
ASPECTR Field_Equipment ::= _ Field_Equipment.

Terms with the new keyword are the
building blocks (primitives) of instance
models.

They can be instantiated.

The users don’t work with these

PONoAppObj + POWithAppObj +
__Physical_Object.

complicated structures, they are for the
FORMULA engine.

Unions, represent the listed types.
Unions are abstract definitions, can
be used in rules, constraints,
transformations, but cannot be
instantiated.

;‘ }

Support System LF

+

+

+

ATTRIBUTES
CONSTRAINTS
ASPECTS

Traveler Device £F Center 1F
+  ATTRIBUTES + ATTRIBUTES
+ CONSTRAINTS + CONSTRAINTS

ASPECTS + ASPECTS

—

Vehicle 4} Field Equipment £
+ ATTRIBUTES + ATTRIBUTES
+ CONSTRAINTS + CONSTRAINTS
+ ASPECTS + ASPECTS

domain DConstraints extends CVRIA
{ Users write their
driverExists :- driver is Driver, .
driver.attributes.name = “John”. code using the
, e unions (and not the
oneFinCenter :- building is Center, .
uilding.attributes.id = “46”. complicated

FOUNDATIONS OF RESILIENT
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G,FO RCES

primitives).
3/1/2017



Results of WebGME -> FORMULA Translation

(Instance model - Electronic Toll Collection App)

Page 26

[~ venicle payment request
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model CVRIA of DConstraints

{

EpFG4zcpjI is _ Vehicle("/817592481/U/P/q",
YCcryQgBUL,
gsakawH193,

X6MNWVCk6P, NULL).
X6MNWVCk6P is Attr__Vehicle("Vehicle OBE", "4").

ZbZCjvrXcE is __Field_Equipment("/817592481/U/P/0",
eFgxjm2sey,
gsakawH193,
SpZ9Q6ZPLI, NULL).

SpZ9Q6ZPLI is Attr__Field_Equipment("Roadside
Equipment", "11").

7EkawrMiB is __Physical_Input_Port("/817592481/U/P/q/s",
NULL, EpFG4zcpjI,
121cLfaRB1, NULL).

aDozrEJx is _ Physical Output_Port("/817592481/U/P/0/7",
NULL, ZbZCjvrXcE,
QpOGstwkSj, NULL).

QpOGstwkSj is Attr_ Physical_ Output_Port("vehicle
payment update").

121cLfaRBl is Attr_ Physical_Input_Port("vehicle payment
update").

nikKfMfhuje is __ InformationFlow("/817592481/U/P/OW",
JNaDozrEJlx, K7EkawrMiB,
XSfylRKaPp, gsakawH193,

NJbT2zfEAL, NULL).
} 3/12017



‘ @ domain DConstraints extends CVRIA

{
1 // Collection of the added readers
. . . L. AddedReader ::= (port:Physical_Port, policy:Policy,

2 AddedReader ::= (port:Physical Port, policy:Policy, reader:Principal). reader:Principal)

3 AddedReader (dstPort, dstPol, reader) :-

4 if InformationFlow, AddedReader(dstPort, dstPol, reader) :-

5 srcLabel __SecurityLabel(_,_,if.src,_), if is InformationFlow,

6 dstLabel __SecurityLabel(_,_,if.dst,_), srcLabel is _ Securitylabel(_, ,if.src,_ ),

7 dstPol Policy, dstPol.parent=dstLabel, dstLabe} 1s _TSecurltyLabel(_,_,1f.dst,_),

. dstPol is Policy, dstPol.parent=dstLabel,

8 srcPol Policy, srcPol.parent=srcLabel, . .

srcPol is Policy, srcPol.parent=srcLabel,

9 srcReader Reader, srcReader.parent=srcPol, srcReader is Reader, srcReader.parent=srcPol,
10 dstReader Reader, dsrReader.parent=dstPol, dstReader is Reader, dsrReader.parent=dstPol,
11
12 // The reader is new reader if it is not specified
13 reader = dstReader.pointers.referTo, // on the source port.

q reader = dstReader.pointers.referTo,
14 srcReader.pointers.referTo. .
15 no srcReader.pointers.referTo.
16 // The propagation constraint is satisfied
17 Propagation :- AddedReader. // if no readers are added
Propagation :- no AddedReader.
}

c
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All FORMULA Pieces Together

e

// Metamodel specification
domain CVRIA

2
__Physical_Object ::= new (id:String, FORMULA Meta Domain
base: any __Physical Object + {NULL},
parent: any GMENode + {NULL},
attributes: Attr__Physical_Object + {NULL},
pointers: {NULL}).
/] <<extends>>
}

// Injected constraints

domain DConstraints extends CVRIA

Y FORMULA Constraint
AddedReader ::= (port:Physical_Port, policy:Policy, reader:Principal). Domain

// See full constraint on previous slide

/] .

Propagation :- no AddedReader. <<instance of>>
}

// Instance Model

model CVRIA of DConstraints
{

// ..

EpFG4zcpjI is _ Vehicle("/817592481/U/P/q",YCcryQgBUL, qsakawH193, x6MNWVCk6P, FORMULA MOdel
NULL).

X6MNWVCk6P is Attr__ Vehicle("Vehicle OBE", "4").
// ..

}

FOUNDATIONS OF RESILIENT
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Validation Workflow for CVRIA

CVRIA Formal Analysis
Enterprise Constraint Checking Verification FORMULA
. . . Servi
Model Synthesis Partial Model Solving ervices
. Queries Transformation
Functional | 2
O | I —_
& Deploymen Security |1 Custom i1 Custom !
= t View View | Views i1 Views
Physical =
] semanti Automatically built from
¢ CVRIA databases
L] interface

CVRIA Metamodel

@) FORCES
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Tool Architecture

|
WebGME Ul components

SERVER

N

CLIENT

1.

Model translation (Formula
Editor initiates towards
WebGME that executes
Export2FORMULA  plugin
and respond with a link to
the Formula domain and
model with the wuser
defined constraints)

. Constraint checking

(Formula Editor initiates
towards WebGME that
executes CheckFORMULA
which uses the Formula
webservice that gets the
result of step 1 and runs it
on a docker container and
responds with the
true/false result per
constraint)
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'r’ GME > guest/4mlExample0N1 . > _master

>»- O~ % | | ‘ \
I _ !
| EOE-~ 1 E- Al )
I stateBase ::= initial + state + end + __ stateBase. I |/“ = 1
' 1OV I
141 1
Meta I transition ::= __ transition. -1 I
1 |1xl I
Composition 1 FCO
initial ::= _ initial. I |
! 1
: I ! Language 1
FormulaEditor ! state ::= _ state. 11 |
| 1 |
Meta ! 11 |
| end ::= __end. 1
|
| X i
_— = 1 GMENode ::= FCO + Language + stateMachine + stateBase + transition +| 1 |
M = || |
| 1 |
| constl :- k = count({ s | s initial}), k = 1. const2 :- k = count
en 1 |
1 const3 :- constl, const2. I
1 constd :- k = count({s | s end}), k = 1. 1 |
1 const5 - k stateMachine, k.id = "/7", g = count({s | s stateB 11 1
FCO (| I
! |
|
‘ 1 example |
initial |
|
! |
Language |
I |
I |
state 1 |
| ) |
0 . | ]
Live Formula domain Textual editor to define
. ime@>=2.0.0 <3.0.0 N o e e e e e e e e =
representation of the constraints

WebGME projects’ language 3hj2017




Minimal Deployment

ATTPrWebsodet In - the  smallest  deployment

. ™ configuration all the necessary
processes can live on the same
Client Machine machine on the server side.
Allowing a quick yet fully functional

\_ - deployment.

OOOOOOOOOOOOOOOOOOOOOO
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Scalable Deployment

4 N

\\webserwce P \

Webgme

Webgme Formula

N load load /
balancer ) balancer
_
)
. O
et Individual parts of the system can be scaled
[ Machine J Independently to serve as many clients as

needed. @ FORCES

OOOOOOOOOOOOOOOOOOOOOO
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R——

+ Completions of the WebGME-FORMULA integration
 Synthesis use cases
* CPS-VO deployment
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