AC Computing Methodology for RF-Powered IoT Devices

Tutu Wan, Yasha Karimi, Yuanfei Huang, Milutin Stanacevic, and Emre Salman

Electrical and Computer Engineering

Stony Brook University (SUNY), Stony Brook, New York 11794 e-mail: emre.salman@stonybrook.edu https://nanocas.ece.stonybrook.edu

- Energy autonomy is a critical challenge for IoT and WSN based devices
- Ambient and/or dedicated wireless power is a promising energy source
- Leverage AC computing methodology to directly power local processing block
 - More than an order of magnitude increase in energy efficiency
 - Powerful local processing capability
 - Elimination of the power losses due to rectification and regulation
 - Elimination of the strong dependence on battery

Charge-Recycling Principle Conventional Charge-recycling processing processing block $E_{CMOS} = \alpha \frac{1}{2} C V_{DD}^2$

Adiabatic Switching

Potential Applications

Source: A. V. Nurmikko et al., **Proceedings of the IEEE, 2010**

IoT Security

Structural health monitoring

SIMON Cipher

- **Bit-serialized SIMON32/64**
- Lightweight cryptographic algorithm
- 32-bit plaintext input
- 64-bit initial keys
- Consists of round function and key expansion

Proposed Architecture

- Primary contributions include
 - Use of adiabatic registers
 - Merging multiplexers and FIFOs to ensure correct synchronization
 - Elimination of the additional flipflops for appending bits
 - Introduction of balanced transfer paths

CMOS English core Backscattercommunication

Results

- RF signal amplitude is 1.2 V
- Operation frequency is 13.56 MHz
- 65 nm commercial CMOS technology

		3,
Architecture	Conventional	Proposed
Logic	Static Logic	PAL
Average Power (µW)	9.12	0.27
Latency (clock cycles)	576	704
Energy (pJ)	387	14
Throughput (Kbps)	753	616
Efficiency (Kb/sec/μW)	83	2281
Number of Transistors	2966	1242

Current Focus

- Power splitting into AC and DC paths
- Integration of a communication framework (backscatter based)
- Further characterization and testing

Publications

- Y. Huang, T. Wan, E. Salman, and M. Stanacevic, "Signal Shaping at Interface of Wireless Power Harvesting and AC Computational
- Logic," IEEE ISCAS, May 2019
- E. Salman, M. Stanacevic, S. Das, and P. Djuric, "Leveraging RF Power for Intelligent Tag Networks," ACM/IEEE GLSVLSI, May 2018
- T. Wan and E. Salman, "Ultra Low Power SIMON Core for Lightweight Encryption," IEEE ISCAS, May 2018 • E. Salman, M. Stanacevic, T. Wan, Y. Karimi, "Radio Frequency
- **Energy Harvesting Apparatus and Method for Utilizing the Same," US Patent Pending**
- T. Wan, Y. Karimi, M. Stanacevic, and E. Salman, "Perspective Paper – Can AC Computing be an Alternative for Wirelessly Powered Devices," IEEE Embedded Systems Letters, 2017
- T. Wan, Y. Karimi, M. Stanacevic, and E. Salman, "Energy Efficient AC Computing Methodology for Wirelessly Powered IoT Devices," IEEE ISCAS, 2017
- T. Wan, E. Salman, and M. Stanacevic, "A New Circuit Design Framework for IoT Devices: Charge Recycling with Wireless Power Harvesting," IEEE ISCAS, 2016

Acknowledgements

This research is supported

- NSF under grant number 1646318
- Simons Foundation

