
Muhammad Sajidur Rahman, Tian Lin, Rad Akefirad^, Donovan Ellis, Eliany Perez, Lois Anne Delong‡, Justin
Cappos‡, Yuriy Brun*, Natalie Ebner, Daniela Oliveira

Florida Institute for Cybersecurity Research

University of Florida New York University‡ University of Massachusetts Amherst* Auto1 Inc.^



Methods
Sample:
• n = 109 Java Developers (age range: 21-52 years, 80.7% male)
• 64.2% participants were professional developers, rest were senior/graduate

students in Computer Science and Engineering.
Study Instrument:
• Code review task: 24 programming puzzles, two-third had API

blindspots, one-third had no blindspots in API usage. All puzzles were
functional and error free.

• Professional experience assessment: A self reported assessment on 17
programming concepts and technologies.

• Personality assessment: Big Five Inventory questionnaire.
• Cognitive assessment: NIH Oral Symbol Digit Test and Brief Test of

Adult Cognition by Telephone.
Study Procedure:
• Participants were asked to solve a set of six puzzles which were

counterbalanced by blindspot and non-blindspot APIs, types of API usage
contexts and cyclomatic complexity.

• Personality assessment was done on a 5-point Likert scale.
• A JavaScript plugin recorded audio responses during cognitive

assessment.
• Upon completion, participants were presented with the solutions and

explanation.

Background
• New instances of existing, well studied vulnerabilities, such as SQL injections and buffer overflows, are frequently reported in

vulnerability databases
• 61% web apps contain at least one vulnerability listed in OWASP Top 10 vulnerability categories (Vereacode Software Securtiy Report 2016)

• 66% of vulnerabilities represented flawed programming practices recommended to avoid by secure programming guidelines
(CWE/SANS top 25 most dangerous software errors, 2011.)

• Developers often ‘blindly’ trust and use programming language APIs as if they are outsourcing security implications to the API itself.
• API security blindspot : A misconception, misunderstanding, or oversight on the part of the developer when using an API
function, which leads to a violation of the recommended API usage protocol with possible introduction of security vulnerabilities.
(Oliveira et. al. 2014, Cappos et. al. 2014)

Questions
1. Is there a difference in developer’s accuracy to solve programming puzzles with API blindspots

compared to non-blindspot puzzles?
2. Which API usage contexts are particularly susceptible to API blindspot?
3. Does cyclomatic complexity have an effect on API blindspot?
4. Does developer’s technical expertise help him detect API blindspots?
5. Do developer’s perception, personality and cognitive ability have an effect on API blindspot

detection?

ØExample of a blindspot puzzle targeting a Java
Runtime API usage.

Ø Susceptibility to API Blindspot: Line 10,
Runtime.exec() method if input
sanitization is not done properly.

Data Analysis
• Hypothesis 1. Developer’s accuracy in API

Blindspot contexts
Multi-level logistic regression
Significant API Blindspot effect (B = −.81, z =

−4.54, p < .001,odds ratio= .44)
Significant Blindspot x API category interaction

(!" = 24.8, p < .001)
Significant Blindspot x Cyclomatic complexity

interaction (!" = 30.1, p < .001)

• Hypothesis 2. Developer perception to detect API
Blindspots

Multi-level logistic regression
No significant effect found

• Hypothesis 3. Cognitive functioning to detect API
Blindspots

Ordinal logistic regression
No significant effect found

• Hypothesis 4. Technical expertise to detect API
Blindspots

Ordinal logistic regression
No significant effect found

• Hypothesis 5. Personality traits to detect API
Blindspots

Ordinal logistic regression
Openness and extraversion found to be

significant (p < .05)

1. Our results confirmed H1 that developers were less likely to correctly solve
puzzles with a blindspot compared to puzzles without a blindspot. This finding
suggests that developers experienced security blindspots while using certain API
functions.

Results

3. Our data did not support that developers’ perceptions of
puzzle clarity, confidence, difficulty, and familiarity was
associated with their ability to detect blindspots. Our
results also did not support that developers’ level of
cognitive functioning predicted their ability to detect
blindspots.

4. Our data also did not support that professional and
technical experience was associated with developers’
ability to detect blindspots. 5. Our results partially

supported that more openness
and higher extraversion as
personality traits in
developers were associated
with higher likelihood to
detect blindspots.

Discussion

• Our data supports the notion that blindspots in API functions lead to the introduction of vulnerabilities in software, even for
experienced developers.

• Given these findings, API designers should consider addressing developers’ misconceptions and flawed assumptions when working
with APIs to increase code security.

• Software Security training and tools should not come as a “one-size-fits-all”, but consider developer’s decision making process and
possible blindspots.

• Future Directions: Explore and rank more variants of API blindspots in code repositories and develop detection and recommender
tool for developers to write more secure code.

2. This effect was more
pronounced for puzzles
with I/O-related API
functions and when the
programming scenario
was more complex (i.e.,
high cyclomatic
complexity).

Figure 2:Interaction effect of cyclomatic complexity of the puzzles on accuracy. X-axis
shows the three levels of complexity: low(≤ 2), medium(3–4) and high (> 4). Y-axis shows
accuracy (predicted probability of correctly solving a puzzle). Error bars represent 95%
confidence intervals.

Figure 1: Developers were more likely to accurately solve non-blindspot puzzles than blindspot puzzles.
Error bars represent 95% confidence intervals.

1 2

3a 4 5

6

3b

Acknowledgements: Research supported by the National Science Foundation under grant 1513572. Published at USENIX SOUPS 2018.

