
BluSTL: Controller Synthesis from Signal Temporal Logic

Specifications

Alexandre Donzé1 and Vasumathi Raman2∗†‡

v0.1, 2015-04-09

Abstract

We present BluSTL, a MATLAB toolbox for automatically generating controllers from spec-
ifications written in Signal Temporal Logic (STL). The toolbox takes as input a system and a set
of constraints expressed in STL and constructs an open-loop or a closed-loop (in a receding hori-
zon or Model Predictive fashion) controller that enforces these constraints on the system while
minimizing some cost function. The controller can also be made reactive or robust to some ex-
ternal input or disturbances. The toolbox is available at https://github.com/BluSTL/BluSTL.

1 Introduction

In [7, 6] we described a new technique for synthesizing controllers for hybrid systems subject to
specifications expressed in Signal Temporal Logic (STL). The present document introduces the
toolbox BluSTL, which implements the ideas presented in these papers. The toolbox takes as in-
put a linear system (which can result from the linearization of some non-linear system), a set of
constraints expressed in STL and a cost function and outputs a controller. The controller can be
either in open-loop, i.e., it will compute a fixed sequence of inputs to be used by the system, or in
closed-loop in a receding horizon fashion. In the latter case, a sequence of inputs is computed at
each step, and only the first input values is used for one time step, and the process is reiterated.
One specificity of the toolbox is that the user can tune the robustness of satisfaction of the STL
specifications as defined in [1]. The toolbox also supports robust controller synthesis in more clas-
sical sense, i.e., robust to variations of some external disturbance input.

The approach as described in [7, 6] is based on encoding the system dynamics, the STL con-
straints and the cost function together in a Mixed-Integer Linear Problem (MILP). The controller
then consists in a pre-compiled MILP which can be solved efficiently by modern MILP solvers, such
as Gurobi [3]. Experiments show that while the pre-compilation phase, which can be done off-line,
can take significantly more time (several seconds to minutes, depending on the complexity of the
dynamics and the specifications) than actually solving the resulting problem which can sometimes
be solved very quickly (less than a second). This makes it possible to use the resulting controller
on-line and possibly in real-time. The rest of the paper briefly describes the theoretical background
and then presents a small tutorial example.

∗This work is supported in part by TerraSwarm, one of six centers of STARnet, a Semiconductor Research
Corporation program sponsored by MARCO and DARPA.
†1V. Raman is with the California Institute of Technology, Pasadena, CA, USA vasu@caltech.edu
‡A. Donzé is with the Department of Electrical Engineering and Computer Science, UC Berkeley, Berkeley, CA

94720, USA donze@berkeley.edu

1

https://github.com/BluSTL/BluSTL

2 Some Theoretical Background

2.1 System dynamics

We consider a continuous-time system Σ of the form

ẋ = Ax+Buu+Bww (1)

y = Cx+Duu+Dww (2)

where

• x ∈ X ⊆ Rn is the system state,

• u ∈ U ⊆ Rm is the control input,

• w ∈ W ⊆ Rl is the external input,

• y ∈ Y ⊆ Ro is the system output.

Given a sampling time ∆t > 0, we discretize Σ into Σd of the form

x(tk+1) = Adx(tk) +Bd
uu(tk) +Bd

ww(tk) (3)

y(tk) = Cdx(tk) +Dd
uu(tk) +Dd

ww(tk) (4)

where for all k > 0, tk+1 − tk = ∆t and t0 = 0. Given an integer N > 0, x0 ∈ X , and two
sequences u ∈ UN−1 and w ∈ WN−1 noted

u = u0u1 . . . uN−1

w = w0w1 . . . wN−1

we denote by ξ(x0,u,w) ∈ XN the 4-uple of sequences (x,y,u,w) = ξ(x0,u,w) such that x, y, u
and w satisfy (3-4) with x(tk) = xk, y(tk) = yk, u(tk) = uk and w(tk) = wk for all k. ξ(x0,u,w),
or sometimes simply ξ is called a run of Σd.

2.2 Signal Temporal Logic

We consider STL formulas defined recursively according to the grammar1

ϕ ::= πµ | ¬ψ | ϕ1 ∧ ϕ2 | alw[a,b] ψ | ϕ1 until[a,b] ϕ2

where πµ is an atomic predicate X × Y × U ×W → B whose truth value is determined by the
sign of a function µ : X ×Y×U ×W → R and ψ is an STL formula. The fact that a run ξ(x0,u,w)
satisfies an STL formula ϕ is denoted by ξ |= ϕ. Informally, ξ |= alw[a,b]ϕ if ϕ holds at every time
step between a and b, and ξ |= ϕ until[a,b] ψ if ϕ holds at every time step before ψ holds, and ψ
holds at some time step between a and b. Additionally, we define ev[a,b]ϕ = > until[a,b] ϕ, so that

1For the readers familiar with temporal logic, note that the notation ev and alw (for � and ♦) are taken from the
syntax also implemented in the toolbox Breach.

2

ξ |= ev[a,b]ϕ if ϕ holds at some time step between a and b. Formally, the validity of a formula ϕ
with respect to the sequence x is defined inductively as follows

ξ |= ϕ ⇔ (ξ, t0) |= ϕ
(ξ, tk) |= πµ ⇔ µ(xk, yk, uk, wk) > 0
(ξ, tk) |= ¬ψ ⇔ ¬((ξ, tk) |= ψ)
(ξ, tk) |= ϕ ∧ ψ ⇔ (ξ, tk) |= ϕ ∧ (ξ, tk) |= ψ
(ξ, tk) |= alw[a,b]ϕ ⇔ ∀tk′ ∈ [tk+a, tk+b], (ξ, tk′) |= ϕ

(ξ, tk) |= ϕ until[a,b] ψ ⇔ ∃tk′ ∈ [tk+a, tk+b] s.t. (ξ, tk′) |= ψ

∧∀tk′′ ∈ [tk, tk′], (ξ, tk′′) |= ϕ.

An STL formula ϕ is bounded-time if it contains no unbounded operators; the bound of ϕ is the
maximum over the sums of all nested upper bounds on the temporal operators, and provides
a conservative maximum trajectory length required to decide its satisfiability. For example, for
alw[0,10]ev[1,6]ϕ, a trajectory of length N ≥ 10 + 6 = 16 is sufficient to determine whether the
formula is satisfiable.

2.3 Robust Satisfaction of STL formulas

Quantitative or robust semantics defines a real-valued function ρϕ of signal ξ and t such that
(ξ, t) |= ϕ ≡ ρϕ(ξ, t) > 0. In this work, it is defined as follows:

ρπ
µ
(ξ, tk) = µ(xk, yk, uk, wk)

ρ¬ψ(ξ, tk) = −ρψ(ξ, tk)
ρϕ1∧ϕ2(ξ, tk) = min(ρϕ1(ξ, tk), ρ

ϕ2(ξ, tk))
ρϕ1∨ϕ2(ξ, tk) = max(ρϕ1(ξ, tk), ρ

ϕ2(ξ, tk))

ρalw[a,b]ψ(ξ, tk) = mintk′∈[t+a,t+b] ρ
ψ(ξ, tk′)

ρϕ1 until[a,b] ϕ2(ξ, tk) = maxtk′∈[t+a,t+b](min(ρϕ2(ξ, tk′),

mintk′′∈[tk,tk′] ρ
ϕ1(ξ, tk′′))

To simplify notation, we denote ρπ
µ

by ρµ for the remainder of this document. The robustness
of satisfaction for an arbitrary STL formula is computed recursively from the above semantics by
propagating the values of the functions associated with each operand using min and max operators
corresponding to the various STL operators. For example, the robust satisfaction of πµ1 where
µ1(x) = x−3 > 0 at time 0 is ρµ1(ξ, 0) = x0−3. The robust satisfaction of µ1∧µ2 is the minimum
of ρµ1 and ρµ2 . Temporal operators are treated as conjunctions and disjunctions along the time
axis: since we deal with discrete time, the robustness of satisfaction of ϕ = alw[0,2.1]µ1 is

ρϕ(x, t) = min
tk∈[0,2.1]

ρµ1(x, tk) = min{x0 − 3, x1 − 3, . . . , xK − 3}

where 0 ≤ t0 < t1 < . . . < tK ≤ 2.1 < tK+1.
The robustness score ρϕ(ξ, t) should be interpreted as how much ξ satisfies ϕ. Its absolute value

can be viewed as the signed distance of ξ from the set of trajectories satisfying or violating ϕ, in
the space of projections with respect to the function µ that define the predicates of ϕ ([2]).

2.4 Controller Synthesis

Given an STL formula ϕ and a cost function of the form J(x0,u,w, ϕ) ∈ R, BluSTL can solve
different control synthesis problem, either in open loop or closed loop, and with a deterministic or

3

adversarial environment (robust control). In all problems, we assume given an initial state x0 ∈ X ,
an horizon L and some reference disturbance signal w ∈ WN . The open loop and closed loop
scenario are depicted as block diagrams on Figure 1 and Figure 2.

Problem 1 (Open loop, deterministic) Compute u∗ = u∗0u
∗
1 . . . u

∗
N−1 where

u∗ = argmin
u∈UN

J(x0,u,w, ϕ)

s.t. ξ(x0,u,w) |= ϕ

Note that we assume that the state of the plant is fully observable.

ϕ,Σd, J

Parametric
MILP

MILP
Solver

u∗ =
u∗0u

∗
1 . . . u

∗
N−1

Plant Σ x,y

x0,
w0, . . . , wN−1

x0, w

synthesis

Figure 1: Open Loop Scenario. A parametric Mixed-Integer Linear Program is generated from the
STL formula φ, the discrete-time plant model Σd and the cost function J . The parameters of this
MILP are the initial state x0 and disturbance vector w. When those are provided, a solver can
compute an optimal solution u∗ for horizon N which is passed and used by the plant Σ.

Problem 2 (closed loop, deterministic) Given an horizon 0 < L < N , for all 0 ≤ k ≤ N −L,
compute u∗k as the first element of the sequence uLk ∗ = uLk ∗ uLk+1 ∗ . . . uLk+L−1∗ satisfying

uLk ∗ = argmin
uLK∈UL

J(xk,u
L
k ,wk, ϕ)

s.t. ξ(xk,u
L
k ,wk) |= ϕ

These two problems both admit an adversarial version where w is allowed to vary in some region
around wref while satisfying some constraints. In this case, BluSTL treats w as an adversary for
the controller which tries to falsify ϕ. The control input returned by BluSTL, if any, is the first
one after some iterations for which this falsification is infeasible. If no such input is found, BluSTL
stops and declares the problem infeasible. We refer the reader to [6] for more details.

3 Getting Started

3.1 Installing BluSTL

BluSTL depends on YALMIP [5], which is best obtained with the Multi-Parametric toolbox
(MPT3) [4]. Most experiments have been done with the Gurobi solver [3] as back-end, though
other solvers might work as well. Once YALMIP (or MPT3) is installed, the only thing to do
to install BluSTL is to add the path BluSTL/src to Matlab paths. In the following, we present
a tutorial example for a simple double integrator system. The tutorial script can be found in
BluSTL/examples/tutorial1.m.

4

u∗ =
u∗0u

∗
1 . . . u

∗
N−1

MILP
Solver

Parametric
MILP

ϕ,Σd, J

Controller

Plant Σ

x0

w0

w0w1 . . . wN−1

synthesis

u∗0 x1

x0

Figure 2: Closed-loop Scenario. As for the open loop scenario, a parametric MILP is synthesized
from the specifications, dynamics and cost function. However, at each time step, only the first
optimal input is used by the plant.

3.2 A Small Tutorial

Defining the plant dynamics

The toolbox is organized around one main class, called STLClti. An STLClti object is primarily
a continuous Linear Time Invariant (LTI) system with inputs, outputs and disturbances. Hence,
a constructors for this class takes matrices to define such an LTI. We first define and A and B
matrices for state evolution:

A = [0 1 ;

0 0];

Bu = [0;1];

Later on, we will use a disturbance signals so we need to define a Bw matrice. This signal will not
influence the state dynamics, though, so we set Bw to be 0.

Bw = [0;0];

Next we define the output dynamics, i.e., C, Du and Dw matrices. Here we have a single output
y(t) = x1(t).

C = [1 0];

Du = 0;

Dw = 0;

Now we can call the main constructor of STLC lti class.

5

Sys= STLC_lti(A,Bu,Bw,C,Du,Dw);

In the next section, we will define the different settings for the control synthesis experiment. Before
that, we define some initial state:

Sys.x0= [1 ; 1];

Defining the controller

We start by defining the time instants for the whole experiment, the discrete time step ts for the
controller and the horizon L in number of time steps.

Sys.time = 0:.1:10;

Sys.ts=.2; % sampling time for controller

Sys.L=10; % horizon is 2s in that case

Next we declare some constraints on control inputs, here, lower and upper bounds:

Sys.u_ub = 10; % upper bound on u

Sys.u_lb = -10; % lower bound on u

Then the following define a signal temporal logic formula to be satisfied by the system. Note that
times in the temporal operators are continuous, not discrete steps.The following formula specifies
that the output signal must remain at distance 0.1 from the external signal for 0.5 seconds after at
most 1 second.

Sys.stl_list = {’ev_[0,1.] alw_[0,0.5] (abs(y1(t)-w1(t)) < 0.1)’};

Now we are ready to compile the controller for our problem.

controller = get_controller(Sys)

Optimizer object with 108 inputs and 79 outputs. Solver: GUROBI-GUROBI

Note that by default, the objective function will minimize the 1-norm of the input.

Testing the controller

The simplest mode to run our system with the newly created controller is in open loop. This is
done with the following command:

run_open_loop(Sys, controller);

6

0 0.5 1 1.5 2 2.5 3 3.5 4

x
1

-1

0

1

0 0.5 1 1.5 2 2.5 3 3.5 4

x
2

-2

0

2

0 0.5 1 1.5 2 2.5 3 3.5 4

y
1

-1

0

1

0 0.5 1 1.5 2 2.5 3 3.5 4

u
1

-10

0

10

Time
0 0.5 1 1.5 2 2.5 3 3.5 4

w
1

-1

0

1

The plot shows the optimal input u1 obtained and resulting state x1,x2 and output y1. We note
that the specification is correctly enforced.
We can run our system in closed loop, but this is not very interesting, because w is 0 anyway. Let’s
change it to take value 1 between time 3 and 4 and -0.5 between time 6 and 8:

Sys.Wref = Sys.time*0.;

Sys.Wref(30:40) = 1;

Sys.Wref(60:80) = -0.5;

Now we change the specification to an unbounded horizon one, where at all instant, the output
must track the external signal with some specified maximum delay:

Sys.stl_list = {’alw (ev_[0,1.] alw_[0,0.5] (abs(y1(t)-w1(t)) < 0.1))’};

controller = get_controller(Sys);

This time we will only plot input and outputs, i.e., disable the state plotting:

Sys.plot_x =[]; % default was Sys.plot_x = [1 2]

run_deterministic(Sys, controller);

7

0 1 2 3 4 5 6 7 8 9 10

y
1

-1

0

1

2

0 1 2 3 4 5 6 7 8 9 10

u
1

-10

-5

0

5

10

Time
0 1 2 3 4 5 6 7 8 9 10

w
1

-0.5

0

0.5

1

Here, the blue lines represent the states, inputs and outputs of the plant, while the green dashed
lines represents the predictions of the model of the controller.
More examples are given in the folder BluSTL/examples. In particular the hvac room case study
demonstrate the adversarial scenario, as well as plot customization. The idea is to create a class
derived from STLC lti and specialize the update plot method.

4 Future Work

BluSTL v0.1 is still at an early stage of development, and beside the usual bug fixes, performance
and stability issues, it can be further improved in many directions. One limitation is that unbounded
specifications are currently limited to alw(ϕ) where ϕ is a bounded horizon formula, where the
horizon should be smaller than L × ts. We are working on supporting more unbounded horizon
specifications, including ev and until with possible nesting (e.g. ev alw or alw ev). Another
direction is to lift the constraint on the horizon of sub-formulas, by using other semantics, e.g.,
weak semantics, adapted to partial traces. Another limitation is on the type of systems considered.
It is relatively easy to use BluSTL for any kind of systems that admit a proper linearization, but
the linear models used in BluSTL are fixed. It would be interesting to implement controller with
switched linear dynamics, or more general hybrid models such as, e.g., Mixed Logical Dynamics
used in the MPT.

References

[1] A. Donzé and O. Maler. Robust satisfaction of temporal logic over real-valued signals. In
Formal Modeling and Analysis of Timed Systems - 8th International Conference, FORMATS
2010, Klosterneuburg, Austria, September 8-10, 2010. Proceedings, pages 92–106, 2010.

[2] G. E. Fainekos and G. J. Pappas. Robustness of temporal logic specifications for continuous-time
signals. Theoretical Computer Science, 410(42):4262–4291, 2009.

8

[3] I. Gurobi Optimization. Gurobi optimizer reference manual, 2015.

[4] M. Herceg, M. Kvasnica, C. Jones, and M. Morari. Multi-Parametric Toolbox 3.0. In Proc. of
the European Control Conference, pages 502–510, Zürich, Switzerland, July 17–19 2013. http:
//control.ee.ethz.ch/~mpt.

[5] J. Lfberg. Yalmip : A toolbox for modeling and optimization in MATLAB. In Proceedings of
the CACSD Conference, Taipei, Taiwan, 2004.

[6] V. Raman, A. Donzé, D. Sadigh, R. M. Murray, and S. A. Seshia. Reactive synthesis from
signal temporal logic specifications. In Proceedings of the international conference on Hybrid
Systems: Computation and Control, HSCC 2015, 2015.

[7] V. Raman, M. Maasoumy, A. Donzé, R. M. Murray, A. Sangiovanni-Vincentelli, and S. A.
Seshia. Model predictive control with signal temporal logic specifications. In Proc. of the IEEE
Conf. on Decision and Control, 2014.

9

http://control.ee.ethz.ch/~mpt
http://control.ee.ethz.ch/~mpt

	Introduction
	Some Theoretical Background
	System dynamics
	Signal Temporal Logic
	Robust Satisfaction of STL formulas
	Controller Synthesis

	Getting Started
	Installing BluSTL
	A Small Tutorial

	Future Work

