
SMT Encoding of Hybrid Systems in dReal
Kyungmin Bae∗, Soonho Kong∗, Sicun Gao†

Abstract
Formal analysis problems of hybrid systems, involving nonlinear real

functions and ordinary differential equations, can be reduced to SMT
(satisfiability modulo theories) problems over the real numbers. The dReal
solver can automatically check the satisfiability of such SMT formulas up
to a given precision δ > 0 . This paper explains how bounded model
checking problems of hybrid systems are encoded in dReal. In particular,
a novel SMT syntax of dReal enables to effectively represent networks of
hybrid systems in a compositional way. We illustrate SMT encoding in
dReal with simple nonlinear hybrid systems.

1 Introduction

An SMT (satisfiability modulo theories) problem is to check the satisfiability of
first-order formulas with respect to certain decidable logical theories. Recently,
SMT-based techniques, such as [4, 5, 6, 9], have been proposed to automatically
analyze a general class of hybrid systems. One advantage of this approach is
that we can apply existing state-of-the-art SMT techniques and tools, which are
proven to be effective for analyzing discrete systems. Moreover, it is fairly easy
to combine different numerical algorithms and decision procedures to analyze
the continuous behavior of hybrid systems.

In SMT-based approaches, formal analysis problems of hybrid systems are
encoded as SMT formulas over the real numbers. Since hybrid systems usually
involve nonlinear real functions and ordinary differential equations (ODEs), the
satisfaction problems of these formulas are in general undecidable. But if we
take into account robustness properties under numerical perturbations, such
problems become decidable up to an arbitrary precision δ > 0 [7, 9]. Suppose
that δ > 0, provided by the user, is the bound on numerical errors that is
tolerable in the analysis. A δ-complete decision procedure for an SMT formula
φ returns false if φ is unsatisfiable, and returns true if its syntactic numerical
perturbation of φ by bound δ is satisfiable. This is practically very useful since
it is not possible to sample exact values of physical parameters in reality.

The dReal tool [8] is an SMT solver to check the satisfiability of logic formulas
over the real numbers up to a given precision δ > 0 using δ-complete decision
∗Carnegie Mellon University, Pittsburgh, USA
†Massachusetts Institute of Technology, Pittsburgh, USA

1

procedures, involving various non-linear real functions, such as polynomials,
exponentiation, trigonometric functions, and solutions of Lipschitz-continuous
ordinary differential equations (ODEs). dReal is built on existing packages to
combine SMT and numerical techniques: opensmt [3] for general SMT decision
procedures, realpaver [10] for the interval constraint propagation (ICP), and
CAPD [1] for computing interval-enclosures of ODEs.

This paper shows SMT encoding for formal analysis of hybrid systems in
dReal. Note that dReal provide a front-end, called dReach [12], to generate such
SMT formulas from hybrid system specifications, and the user need not know
the details of SMT encoding in practice. A number of benchmarks and examples
in this paper are available at our tool website http://dreal.github.io.

2 Background: Hybrid Automata

Throughout this paper we use hybrid automata [11] as formal models of hybrid
systems. Discrete states of a hybrid automaton H are given by a set of control
modes Q. Physical states of H are given by a finite set X = {x1, . . . , xn} of
real-numbered variables. A combined state of H is then a pair (q,~v) of a mode
q ∈ Q and a vector ~v of real numbers. Each mode q has an invariant condition,
denoted by predicate invq(~x), that defines the set of all possible values of X
in mode q. Similarly, a set of initial states is expressed by using predicates
initq(~x). The continuous dynamics of H is specified by a flow condition of the
form d~x

dt = flowq(~x) for mode q, expressing a system of ordinary differential
equations (ODEs) for the variables X. A discrete transition between two modes
q and q′ is specified by a jump condition of the form jumpq,a,q′(~x, ~x′), which can
also be identified with action a ∈ Σ, given a set of actions Σ.

Example 1 (Periodic Water Tank) The water level in a tank is periodically
controlled by its pump. For each period T , the pump is on if the water level is
lower than Lmin, and the pump is off if the water level is higher than Lmax.
The pump has two control modes Q = {mon,moff} to denote its status. There
are two real-numbered variables X = {x, τ} with x for the water level and τ
for its timer. Both modes have the invariant condition inv(x, τ) ≡ 0 ≤ τ ≤ T .
Initially, the pump is on, Lmin < x < Lmax, and τ = 0. The water level x and
the timer τ changes according to the nonlinear flow conditions:

dx
dt = (p− a

√
2g
√
x)/A

dτ
dt = 1

if q = mon,
dx
dt = −a

√
2g
√
x/A

dτ
dt = 1

if q = moff,

where A, p, a are constants determined by the size of the tank, the power of
the pump, and the output of the tank. The jump conditions are given by:
(i) jumpmon,a,mon

(x, τ, x′, τ ′) ≡ τ = T ∧ x ≤ Lmax ∧ x′ = x ∧ τ ′ = 0,
(ii) jumpmon,a,moff

(x, τ, x′, τ ′) ≡ τ = T ∧ x > Lmax ∧ x′ = x ∧ τ ′ = 0,
(iii) jumpmoff,a,mon

(x, τ, x′, τ ′) ≡ τ = T ∧ x < Lmin ∧ x′ = x ∧ τ ′ = 0, and
(iv) jumpmoff,a,moff

(x, τ, x′, τ ′) ≡ τ = T ∧ x ≥ Lmin ∧ x′ = x ∧ τ ′ = 0.

2

http://dreal.github.io

pump 1 tank 1

pump 2 tank 2

Figure 1: Networked water tanks (output of tank 1 goes to input of tank 2).

A hybrid system is often composed of a network of smaller hybrid systems,
which is specified as a parallel composition of hybrid automata. For a parallel
composition H1 ‖ H2 of two hybrid automata H1 and H2, its control mode is a
pair (q1, q2) ∈ Q1 ×Q2 of H1’s mode q1 and H2’s mode q2. A physical state is
given by the set X1 ∪X2 of the real-numbered variables from both H1 and H2.
For mode (q1, q2), an invariant condition inv(q1,q2)(~x1, ~x2) holds iff both H1’s
invariant condition inv1

q1
(~x1) and H2’s condition inv2

q2
(~x2) hold. Likewise, an

initial condition init(q1,q2)(~x1, ~x2) holds iff both init1
q1

(~x1) and init2
q2

(~x2) hold.
The continuous interaction between H1 and H2 is modeled in H1 ‖ H2 by

using shared variables X1∩X2, and their discrete communication is modeled by
using joint synchronous actions. A flow condition of mode (q1, q2) is a system
of ODEs for X1 ∪X2 of the form d~x1

dt = flow1
q1

(~x1) ∧ d~x2
dt = flow2

q2
(~x2), where

the flow condition of H1 in mode q1 is compatible with the flow condition of H2
in mode q2 for the shared variables X1 ∩X2. For modes (q1, q2) and (q′1, q′2), a
jump condition jump(q1,q2),a,(q′

1,q
′
2)(~x1, ~x2, ~x

′
1, ~x
′
2) with action a ∈ Σ1 ∪ Σ2 holds

iff for i = 1, 2, either jumpqi,a,q′
i
(~xi, ~x′i) holds when a is an action of Hi, or

qi = q′i and ~xi = ~x′i when a is not an action of Hi. Notice that if a is a common
action, then H1 and H2 must synchronize their transitions with action a.

Example 2 (Networked Water Tanks) Several water tanks in Example 1
are connected by pipes in sequence as shown in Figure 1 (adapted from [13, 14]).
Every tank controller shares the same timer variable τ with the flow condition
dτ
dt = 1. That is, for tank i, Xi = {xi, τ}. The water level of each tank now
depends on the levels of the adjacent tanks as well as the pump’s mode. Hence,
the water level xi of tank i changes according to the flow condition:

dxi

dt =
(
(pi + a

√
2g√xi−1)− a

√
2g
√
xi
)
/Ai if qi = mon,

dxi

dt = (a
√

2g√xi−1 − a
√

2g
√
xi)/Ai if qi = moff,

where Ai, pi, a are determined by the size of the tank, the power of the pump,
and the width of the pipe (x0 = 0 for the leftmost tank 1).

We assume that each water tank controller has the same period T ∈ R, and
its jump conditions is labeled with the same action a. Therefore, every water
tank controller synchronously performs its discrete transitions with the common
action a according to the jump conditions in Example 1 (for each period T , the
pump is on if xi ≤ Lmin, and off if xi > Lmax).

3

3 SMT Encoding of Hybrid Automata

This section explains how bounded model checking problems of hybrid automata
are encoded as SMT problems in dReal. The syntax of SMT formulas in dReal
follows version 2 of the SMT-LIB standard [2] with extensions to declare systems
of ordinary differential equations and their solutions. The dReach front-end [12]
automatically generates such formulas from hybrid automata specifications.

Variable Declarations. For bounded model checking of a hybrid automata
H with depth N , we need to encode its behavior for N steps of mode changes. A
mode of H at the i-th step is expressed as a variable modei. A variable timei is
declared to denote the time elapsed within modei. For each state variable y ∈ X,
we use two sets of variables y_i_0 (0-variables) and y_i_t (t-variables) to denote
the values of x at the beginning and the end of the i-th step, respectively. Such
variables are introduced with the declare-fun keyword. For example, the two
state variables x and τ for the i-th step in Example 1 are declared as follows:
(declare-fun mode_i () Real) (declare-fun time_i () Real)
(declare-fun tau_i_0 () Real) (declare-fun tau_i_t () Real)
(declare-fun x_i_0 () Real) (declare-fun x_i_t () Real)

In dReal, we need that each real-numbered variable is bounded for δ-complete
decision procedures. For variable y, its bound a ≤ y ≤ b is declared with the
assert statement (assert (and (<= a y) (<= y b))). E.g., for Example 1:
(assert (and (<= 0 mode_i) (<= mode_i 1) (<= 0 time_i) (<= time_i T)

(<= 0 tau_i_0) (<= tau_i_0 T) (<= 0 tau_i_t) (<= tau_i_t T)
(< 0 x_i_0) (<= x_i_0 10) (< 0 x_i_t) (<= x_i_t 10)))

Flow Declarations. To declare systems of ODEs, dReal introduces the new
keyword define-ode. An ODE system (dx1

dt = u1, . . . ,
dxn

dt = un) is defined
by the statement (define-ode flow ((= d/dt[x1] u1). . .(= d/dt[xn] un))) with
identifier flow. For example, the two nonlinear ODE systems in Example 1 are
declared by using the define-ode keyword as follows:1

(declare-fun x () Real) (declare-fun tau () Real)
(define-ode flow_1 ((= d/dt[x] (/ (- q (* (* a (sqrt (* 2 g))) (sqrt x))) A))

(= d/dt[tau] 1)))
(define-ode flow_2 ((= d/dt[x] (/ (* (* -a (sqrt (* 2 g))) (sqrt x)) A))

(= d/dt[tau] 1)))

Initial Conditions. We define initial conditions as formulas on the initial
mode variable mode0, and the 0-variables to denote the values at the beginning
of the initial step (that is, for variable y, the variable y_0_0). Of course, such
conditions are declared using assert statements in dReal. E.g., for Example 1,
when mode mon is denoted by number 0 and moff is denoted by number 1:
(assert (and (= mode_0 0) (= tau_0_0 0) (< Lmin x_0_0) (< x_0_0 Lmax)))

1The sqrt function is Lipschitz continuous only if its domain is positive. The water level
is always positive in our example. dReal reports an exception if the condition cannot be met.

4

Jump Conditions. Jump conditions are directly expressed as SMT formulas
using assert statements and Boolean connectives. Since jumps happen at the
end of each step, we define constraints between t-variables of the current step
and 0-variables of the next step. For example, the jump conditions of the i-th
step in Example 1 are written in dReal as follows, where j = i+ 1:
(assert (or (and (= mode_i 0) (= mode_j 0)

(= tau_i_t T) (<= x_i_t Lmax) (= x_j_0 x_i_t) (= tau_j_0 0))
(and (= mode_i 0) (= mode_j 1)

(= tau_i_t T) (> x_i_t Lmax) (= x_j_0 x_i_t) (= tau_j_0 0))
(and (= mode_i 1) (= mode_j 0)

(= tau_i_t T) (< x_i_t Lmin) (= x_j_0 x_i_t) (= tau_j_0 0))
(and (= mode_i 1) (= mode_j 1)

(= tau_i_t T) (>= x_i_t Lmin) (= x_j_0 x_i_t) (= tau_j_0 0))))

Flow Conditions. Solutions of ODEs are expressed by using the new keyword
integral in dReal. An integral term (yt0, . . . , ytn) = (y0

0 , . . . , y
0
n)+

∫ t
0 flowi(t) dt is

written as (= [y_0_t. . .y_n_t] (integral 0 t [y_0_0. . .y_n_0] flow_i)), where
flowi is declared as a define-ode statement. For each i-th step, flow conditions
are defined by constraints between 0-variables, t-variables, and time duration
of the i-th step according to current modes. For the water tank example in
Example 1, given 0-variables [x0

i , τ
0
i] at the i-step, if the i-th step’s duration

is timei, then the values of the t-variables [xti, τ ti] are defined using integral
statements according to its mode modei as follows:
(assert (or (and (= mode_i 0)

(= [x_i_t tau_i_t] (integral 0. time_i [x_i_0 tau_i_0] flow_1)))
(and (= mode_i 1)

(= [x_i_t tau_i_t] (integral 0. time_i [x_i_0 tau_i_0] flow_2)))))

Invariant Conditions. In a hybrid automaton H, an invariant condition
of mode q must be satisfied at any time as long as H’s current mode is q. To
encode invariant conditions, we need to deal with universally quantified formulas
over time. Therefore, dReal introduce a new keyword forall_t: the statement
(forall_t n [0 u] φ(~xt)) declares that φ(~xt) holds for any time t ∈ [0, u] with
the flow condition flown (that is, ∀t ∈ [0, u]. (~xt = ~x0 +

∫ t
0 flown dt) → φ(~xt)).

For example, the invariant condition 0 ≤ τ ≤ T for the i-step in Example 1 is
written by the forall_t keyword as follows:
(assert (and (forall_t 1 [0 time_i] (>= tau_i_t 0) (<= tau_i_t T))

(forall_t 2 [0 time_i] (>= tau_i_t 0) (<= tau_i_t T))))

Bounded Model Checking. A safety requirement ϕ of a hybrid automaton
H is expressed using t-variables of the final step, and the reachability goal is
given by its negation ¬ϕ. For Example 1, the requirement is that the water
level x lies between Lmin − ε and Lmax + ε with a certain limit ε > 0 (that is,
Lmin − ε ≤ xtN ≤ Lmax + ε). The reachability goal is given by its negation:
(assert (or (< x_N_t (- Lmin ε)) (> x_N_t (+ Lmax ε))))

5

The entire formula for bounded model checking with depth N consists of:
(i) variable and flow declarations, and initial condition formulas, (ii) flow, jump,
and invariant condition formulas for i = 0, . . . , N , and (iii) reachability goal
formulas. It begins with the command (set-logic QF_NRA_ODE), and ends with
the commands (check-sat) (exit). The bound is iteratively increased from 0,
and the verification is performed for every intermediate step i = 0, . . . , N .

If the SMT formula is satisfied, then we have a counterexample satisfying
the reachability goal, and the safety requirement is violated. Otherwise, the
safety requirement is satisfied since there is no counterexample. Since dReal
uses δ-complete decision procedures, the result is over-approximated by δ. A
counterexample of ϕ can violate ϕ with numerical perturbation up to δ > 0 (i.e.,
a counterexample may be spurious). However, if no counterexample is found,
then indeed there exists no counterexample regardless δ.

4 SMT Encoding of Compositions

A parallel composition of hybrid automata can be considered as a single hybrid
automaton, and its bounded model checking problems can be encoded as SMT
formulas in the exactly same way. However, the size of the formula can be big;
for a parallel composition H1 ‖ · · · ‖ Hn, if each Hi has ki modes, then the size
of the formula for N -step bounded model checking in the standard encoding is
O(N ·

∏n
1 ki). This formula explosion problem can make SMT-based analysis of

networks of hybrid systems practically infeasible.
One of the reasons is that the integral command only accepts complete

ODE systems. In a parallel composition, each mode of a single automaton
corresponds to a (partial) ODE system, and a composited mode corresponds
to a complete ODE system composed of those partial ODE systems. However,
flow conditions cannot be decomposed in general, since variables in ODEs evolve
simultaneously over continuous time (on the other hand, jump conditions of
parallel compositions can be easily written in a compositional way according
to the definition). For this reason, existing SMT techniques use the standard
non-compositional encoding for networked hybrid automata.

We have recently introduced two new commends pintegral and connect to
allow compositional encoding of networks of hybrid systems (and developed an
SMT algorithm for the new syntax that will be presented elsewhere). Instead of
declaring complete systems of ODEs as Section 3, we only declare several partial
systems of ODEs by using define-ode statements for parallel compositions of
hybrid automata. For example, partial ODE systems for two connected water
tanks in Example 2 are declared as the following five partial flow decorations:
(define-ode flow_1 ((= d/dt[tau] 1)))
(define-ode flow_2

((= d/dt[x1] (/ (- q1 (* (* a (sqrt (* 2 g))) (sqrt x1))) A1))))
(define-ode flow_3 ((= d/dt[x1] (/ (* (* -a (sqrt (* 2 g))) (sqrt x1)) A1))))
(define-ode flow_4

((= d/dt[x2] (/ (+ q2 (* (* a (sqrt (* 2 g))) (- (sqrt x1) (sqrt x2)))) A2))))
(define-ode flow_5

((= d/dt[x2] (/ (* (* a (sqrt (* 2 g))) (- (sqrt x1) (sqrt x2))) A2))))

6

We then use the keyword pintegral to define parameterized integral terms
~yt = ~y0 +

∫ t
0 [h1(t), . . . , hk(t)] dt over flow parameters h1, . . . , hk with the syntax:

(= [y_0_t. . .y_n_t] (pintegral 0 t [y_0_0. . .y_n_0] [holder_1...holder_k]))

A concrete partial flow flowl is assigned to a flow parameter holderj using
the keyword connect with the syntax (connect holder_j flow_l). Notice that
“complete” assignments to such flow parameters h1, . . . , hk are supposed to give
complete systems of ODEs. (the forall_t command is not yet available for
flows given by pintegral at the moment, but will be implemented soon.)

For example, the i-step flow condition of the two connected water tanks
in Example 2 includes only one parameterized integral term over three flow
parameters holderai

for the timer, holderbi
for tank 1, and holderci

for tank 2
(where ai = 3i+ 1, bi = 3i+ 2, and ci = 3i+ 3):
(assert (= [x1_i_t x2_i_t tau_0_t]

(pintegral 0. time_0 [x1_i_0 x2_i_0 tau_i_0] [holder_ai holder_bi holder_ci]))))

After that, we separately assign partial flows to those flow parameters according
to current modes using the connect keyword, where flow_1 is for the timer τ ,
flow_2 and flow_3 are for tank 1, and flow_4 and flow_5 are for tank 2:
(assert (or (and (= mode1_i 0) (connect holder_ai flow_2))

(and (= mode1_i 1) (connect holder_ai flow_3))))
(assert (or (and (= mode2_i 0) (connect holder_bi flow_4))

(and (= mode2_i 1) (connect holder_bi flow_5))))
(assert (connect holder_ci flow_1))

Using this new encoding, the size of the formula for N -step bounded model
checking can be O(N ·

∑n
1 ki) for a parallel composition H1 ‖ · · · ‖ Hn, when

each Hi has ki modes (cf., O(N ·
∏n

1 ki) for the previous encoding). This can
in turn greatly improve the performance of SMT-based analysis of networks
of hybrid systems. For example, when we consider the two connected water
tanks in Example 2, for bound k = 3, the new encoding can verify the system
in 8 seconds, whereas the old encoding took 22688 seconds (for details, see
http://dreal.github.io/benchmarks/networks/water).

5 Concluding Remarks

We have illustrated SMT encoding for bounded model checking problems of
hybrid systems in dReal. In this way, general hybrid systems involving nonlinear
real functions and ordinary differential equations can be analyzed by dReal using
δ-complete decision procedures. A number of benchmarks and various examples
(including the networked water tank example) are available at our tool website
http://dreal.github.io.

The dReach tool [12] provides a front-end of dReal to automatically generate
SMT formulas from hybrid automata specifications. Since dReach currently only
supports single hybrid automata, we plan to extend dReach to explicitly support
networks of hybrid automata with compositional SMT encoding.

7

http://dreal.github.io/benchmarks/networks/water
http://dreal.github.io

References

[1] CAPD: Computer assisted proofs in dynamical systems.
http://capd.ii.uj.edu.pl/index.php.

[2] C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB Standard: Version
2.0. In Proc. SMT, 2010.

[3] R. Bruttomesso, E. Pek, N. Sharygina, and A. Tsitovich. The OpenSMT
solver. In TACAS, volume 6015 of LNCS. Springer, 2010.

[4] A. Cimatti, S. Mover, and S. Tonetta. SMT-based verification of hybrid
systems. In Proc. AAAI, 2012.

[5] A. Eggers, M. Fränzle, and C. Herde. SAT modulo ODE: A direct SAT
approach to hybrid systems. In Proc. ATVA, 2008.

[6] M. Fränzle and C. Herde. Hysat: An efficient proof engine for bounded
model checking of hybrid systems. Formal Methods in System Design,
30(3):179–198, 2007.

[7] S. Gao, J. Avigad, and E. M. Clarke. δ-complete decision procedures for
satisfiability over the reals. In IJCAR, volume 7364 of LNCS, pages 286–
300. Springer, 2012.

[8] S. Gao, S. Kong, and E. M. Clarke. dReal: An SMT solver for nonlinear
theories over the reals. In CADE, volume 7898 of LNCS, pages 208–214.
Springer, 2013.

[9] S. Gao, S. Kong, and E. M. Clarke. Satisfiability modulo odes. In FMCAD,
pages 105–112. IEEE, 2013.

[10] L. Granvilliers and F. Benhamou. Algorithm 852: Realpaver: an interval
solver using constraint satisfaction techniques. ACM Trans. Math. Softw.,
32(1):138–156, 2006.

[11] T. A. Henzinger. The theory of hybrid automata. Springer, 2000.

[12] S. Kong, S. Gao, W. Chen, and E. M. Clarke. dReach: δ-reachability
analysis for hybrid systems. In TACAS, 2015. to appear.

[13] S. Kowalewski, O. Stursberg, M. Fritz, H. Graf, I. Hoffmann, J. Preußig,
M. Remelhe, S. Simon, and H. Treseler. A case study in tool-aided analysis
of discretely controlled continuous systems: the two tanks problem. In
Hybrid Systems V, pages 163–185. Springer, 1999.

[14] J. Raisch, E. Klein, C. Meder, A. Itigin, and S. O’Young. Approximating
automata and discrete control for continuous systems — two examples from
process control. In Hybrid systems V, pages 279–303. Springer, 1999.

8

	Introduction
	Background: Hybrid Automata
	SMT Encoding of Hybrid Automata
	SMT Encoding of Compositions
	Concluding Remarks

