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Abstract

We present a case study of attitude control for a quadrotor drone and
propose the application of reachability analysis to investigate and improve
the robustness of the control design. The controller is to be implemented
and tested using an experimental platform, the CrazyFlie. We intend
to use measured data to improve the models employed in reachability
analysis.
Category: academic Difficulty: medium

1 Context and Origins

Recent advances in low-power embedded processors, wireless communications
and miniature sensors and actuators have increased the interest on the develop-
ment of drones with a wide range of indoors and outdoors applications: safety,
security, defense, inspection, communication links, data acquisition, entertain-
ment, package delivery, not being exhaustive.

Quadrotors are of particular interest when implementing small-scale drones
because of the simpler control and stabilization mechanisms and their ability to
perform vertical take-off and landing (VTOL), omnidirectional movements, hov-
ering, or low speeds flights [1]. One disadvantage is the high power consumption
during the flight.

When approaching the control of quadrotors, we can identify two main prob-
lems: the attitude stabilization and the guidance [2]. The attitude stabilization
aims to enhance the vehicle dynamics by feedback control. It can be employed
to enhance stability in remote piloting. The guidance has a broader objective
that is to control the position and the orientation of the vehicle, aiming the
autonomous behavior. Usual approaches in guidance are interception, surveil-
lance or rendez-vous [2]. In general, the attitude stabilization and the guidance
problems are treated by separated control loops, being an inner loop related to
the first, and an outer loop to the second. Generally, the time constants of the
two problems are different, being the attitude stabilization with faster dynamics
than the guidance.
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We develop a case study of attitude control of a quadrotor. In our approach
we propose a nested control architecture exploiting the modularity of the model.
An inner loop takes care of the angular rates and vertical speed, and an outer
loop takes care of the angular orientation and position. In order to investigate
the robustness of the controller, we apply reachability analysis [3,4]. We present
two nonlinear models for the quadrotor, one based on the Euler angles and the
other on quaternions. A linearized model obtained from the Euler angles model
is used for control design. On the other hand, a linearized model obtained
from the quaternions model is used for reachability analysis. The quaternions
model is polynomial and singularity free, when compared to the Euler angles
model. This enables the application of many reachability analysis techniques
suitable to polynomial systems as, for example, [5] or [12]. In this work we
overapproximate the polynomial nonlinearities using McCormick relaxations [6].
Moreover, we will implement the controller into a real experimental quadrotor
platform, the CrazyFlie, from BitCraze1, and use measured data to improve
the model employed in the reachability analysis. Identification techniques for
piecewise affine systems as in [7] are to be used in this step.

Another benchmark for reachability analysis based on a quadrotor is pre-
sented in [8]. They define a flight envelope protection used for safety-preserving
controller synthesis. In their definition of the flight envelope, they address both
attitude stabilization and guidance problems. But they present a nonlinear
model that disregards many of the relevant dynamic interactions for the atti-
tude stabilization problem, for example, the Coriolis forces in translational and
rotational dynamics. Therefore we believe that the model in [8] is more suited to
address guidance problems, while the model presented in this paper is suitable
for both attitude stabilization and guidance problems.

This paper is organized as follows. Section 2 presents the quadrotor model
and the attitude controller design. Section 3 introduces our approach for apply-
ing the reachability analysis. Section 4 presents some remarks on the current
results of the work.

2 Brief Description

2.1 Quadrotor Nonlinear Model

Consider a quadrotor where each rotor Ri, i ∈ {1, 2, 3, 4}, produces on the air-
frame a force Fi and a torque τi, according to its direction of rotation. The
front and back rotors spin clockwise and the right and left rotors spin counter-
clockwise [1]. We treat a quadrotor with a cross “+” configuration, so that the
front of the quadrotor points towards rotor R1, the back to rotor R3 and, when
looking from above, the right to rotor R2 and the left to rotor R4.

For control purposes, the model inputs are the forces and torques produced
by the rotors on the airframe [1]: the Thrust F = F1 + F2 + F3 + F4, the Roll
Torque τφ = l(F4−F2), the Pitch Torque τθ = l(F3−F1), and the Yaw Torque:

1http://www.bitcraze.se/
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τψ = τ1 − τ2 + τ3 − τ4, where l is the distance from the rotors to the quadrotor
center of mass.

The state variables for the quadrotor model are the following:

• The inertial position ~P = [pn pe h]T is measured with respect to the
inertial frame Fi, where pn is the north position; pe is the east position;
and h is the height (−zi direction).2

• The linear velocity ~V = [u v w]T , is measured with respect to the body
frame Fb, where u is the xb-component; v is the yb-component; and w is
the zb-component.

• The angular orientation is represented by quaternions and Euler angles.
The quaternion Qvb = [q0 q1 q2 q3]T represents the orientation of the
body frame with respect to the inertial frame. The Euler angles are Σ =
[φ θ ψ]T , where φ is the roll angle, θ is the pitch angle and ψ is the yaw
angle.

• The angular velocity ~Ω = [p q r]T is measured with respect to Fb, where
p is the xb-component, or roll rate; q is the yb-component, or pitch rate,;
and r is the zb-component, or yaw rate.

Quaternions are used instead of Euler angles because they lead to sim-
pler, polynomial, and singularity-free dynamical equations for the quadrotor [9].
Moreover, these polynomial dynamic equations are exploited in this paper to
obtain alternative linearized systems for reachability analysis.

The nonlinear model for a quadrotor is defined by the following set of equa-
tions:  ṗn
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ḣ

 = R
v
b

 u
v
w

 (1)

 u̇
v̇
ẇ
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ṙ

 =

 qr(Jy − Jz)/Jx
pr(Jz − Jx)/Jy
pq(Jx − Jy)/Jz

 +

 τφ/Jx
τθ/Jy
τψ/Jz

 (5)

Equation (1) is the Translation Kinematics, equation (2) is the Translation
Dynamics, equations (3) and (4) represent the Rotation Kinematics in terms
of Euler angles and quaternions, respectively, and equation (5) is the Rotation
Dynamics. The above equations can be obtained by considering the physical

2Details on the modeling are presented in the accompanying expanded version of the paper.
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principles of a quadrotor frame and then applying the Newton-Euler or the
Lagrangian methods [1]. In Equations (1) to (5), m is the mass of the quadrotor,
g is the acceleration of the gravity, and Jx, Jy, and Jz are the xb, yb, and zb
axis moments of inertia of the airframe, respectively. Finally, Rvb is the rotation

matrix from frame Fv to frame Fb and Rvb =
(
Rbv

)T
is the inverse rotation

matrix. In the expanded version of the paper, we present the rotation matrices in
terms of quaternions and Euler angles and also the unraveled dynamic equations.

2.2 Linearization

In order to perform control design and reachability analysis we use two ap-
proaches for the linearization of the quadrotor nonlinear equations.

First, we present the linearization around an equilibrium point, correspond-
ing to the quadrotor being at a static hovering position in 3D space. The basic
hypothesis are that u0 = v0 = w0 = 0 m/s and p0 = q0 = r0 = 0 rad/s,
and the following relations come from the analysis of the nonlinear equations:
φ0 = θ0 = ψ0 = 0 rad, F0 = mg N , τφ = τθ = τψ = 0 N.m, and (pn0, pe0, h0) ∈
R3 [m]. The linearized model can be written as the following simple set of linear
equations3:

ṗn = u
ṗe = v

ḣ = w

u̇ = −gθ
v̇ = gφ
ẇ = −F/m

φ̇ = p

θ̇ = q

ψ̇ = r

ṗ = τφ/Jx
q̇ = τθ/Jy
ṙ = τψ/Jz

(6)

The previous linearized model is useful for control design, because of its
simplicity. The decoupling of the variables is exploited in the controller design,
in order to make nested control architecture. Notice that the rotational part
of the nonlinear model presented in [8] is equivalent to the rotational part of
the linear model in equation (6). The relevant difference in the translational
parts of both models is that the linear velocities in [8] are expressed in terms of
inertial frame coordinates.

When applying the reachability analysis to investigate the stability and the
performance of the closed loop system, we need a richer model that could better
represent the actual system behavior. One option could be to use the nonlinear
model in Section 2.1. Notice that this nonlinear model has also uncertainties
and unmodelled dynamics, like lift and drag forces [10], and would contribute
with some of the possible traces of the state trajectory. Therefore, we propose
a piecewise affine model for the quadrotor to be applied in the reachability
analysis [4].

Our model exploits the polynomial equations of the quaternions nonlinear
model. Notice that the nonlinearities of the quaternion model are essentially
quadratic and cubic monomials on the state variables. We use McCormick
relaxations [6] to overapproximate these polynomial terms.

3We work the Euler angles model because it can be shown that the linearized quaternion
model comes up with uncontrollable modes.
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Given two variables defined within intervals with lower and upper bounds
x1 ∈ [xL1 , x

U
1 ] and x2 ∈ [xL2 , x

U
2 ], the McCormick relaxation defines a set of

planes for lower and upper bounds for the quadratic monomial w12 = x1x2
as [6]:

w12 ≤ xL1 x2 + xU2 x1 − xL1 xU2
w12 ≤ xU1 x2 + xL2 x1 − xU1 xL2
w12 ≥ xL1 x2 + xL2 x1 − xL1 xL2
w12 ≥ xU1 x2 + xU2 x1 − xU1 xU2

(7)

The above inequalities define a convex polyhedron in the space defined by x1,
x2 and w12, that overapproximates the values for w12.

As an illustration, we use the McCormick relaxation planes to create a poly-
hedron to overapproximate the quadratic monomials that appear in the rotation
dynamics part of the quadrotor nonlinear model, equation (5). Specifically we
approximate the products pr, qr and pq in those equations. We’ve provided
bounds to p, q and r by observing the result of various simulation scenarios and
considering the dimensions of the CrazyFlie. From this, we’ve arbitrated that
pL = qL = rL = −1.0 rad/s and pU = qU = rU = 1.0 rad/s. We are working
on SpaceEx components based on McCormick relaxations to overapproximate
other polynomial terms that appear in the quaternions nonlinear model.

2.3 Controller Design

The strapdown sensors available in the CrazyFlie are a rate gyro, an accelerom-
eter, a magnetometer and a barometer. Using sensor fusion we can obtain with
certain precision the angular rates, the quaternion, the Euler angles, the linear
speeds, and the height [1,10]. We disregard the horizontal position information
for the moment.

We’ve chosen as reference inputs for the attitude controller the height and
the orientation of the quadrotor. These references can can be generated by the
game controller [11].

The architecture of the attitude controller is shown in Figure 1. We’ve
proposed a nested control architecture. The inner loops are the Angular Rates
and the Vertical Speed controllers that act directly on the thrust F and the
torques τφ, τθ and τψ. In an outer loop, the Vertical Position and the Angular
Orientation controllers receive the references to the height and orientation, and
transform them into references for the inner loop controllers.

We are currently working on the rotational part of the controller. We illus-
trate the performance of the angular rates controller by means of simulations.
The simulation has as initial values for [p q r]T as [0.6 − 0.7 0.8]T rad/s and
as reference inputs [0 0 0]T rad/s. The results for variable p is shown in Figure
2, the other variables, q and r behave similarly. The linear velocities reach the
desired values with a settling time of less than 0.5s. There is an overshoot of
20% and the linear and the nonlinear systems present very similar behaviors.
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Figure 1: Attitude Controller Architecture.

Figure 2: Simulation Results.

3 Key Observations

We intend to use reachability analysis techniques to investigate and improve the
robustness of the controller. The analysis is performed using the tool SpaceEx
[4]4, that is a scalable tool for the reachability analysis for piecewise affine
systems.

As a first illustration, the reachability analysis of the angular rates controller
is performed with the following set of initial conditions: −1 ≤ p ≤ 1, −1 ≤ q ≤
1 and −1 ≤ r ≤ 1. Termination of the reachability analysis has occurred,
therefore the controller shows to be stable and robust to the variations in the
plant. A graphical illustration of the result of the reachability analysis for
variable p is shown in Figure 3, the other variables, q and r, behave accordingly.
The polynomial quaternions nonlinear model can also be exploited by other

4http://spaceex.imag.fr/
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Figure 3: Reachability Analysis Results.

reachability analysis techniques, like the ones based on Bernstein polynomials
[5]. Flight envelopes as in [8] can also be applied for the safety controller design
using the quaternions model. Moreover, in [12] the problem of the region of
attraction of polynomial dynamic systems is addressed.

4 Outlook

In the following steps we will complete the attitude controller design, using the
reachability analysis as a control design support tool. Then we will implement
the controller in the CrazyFlie and perform measurements of the closed loop
system. In a further step, we plan to perform measurements and enhance the
proposed piecewise affine model using system identification techniques [7]. In a
possible expansion, a reported dependence of the actuators performance on the
battery voltage could be exploited in a varying parameter approach [13].
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A Companion Files

We’ve attached to this abstract a zipped file with the following content:

1. An expanded version of this abstract providing details on the modeling.

2. Matlab / Simulink files for simulation of the angular rates controller, com-
paring the behaviors of the linear and nonlinear models.

3. Matlab scripts and functions for analyzing the McCormick relaxations.

4. SpaceEx files containing the models for the reachability analysis.
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