Benchmark: Quadrotor Attitude Control Antonio Eduardo Carrilho da Cunha*

v1.7, 2015-04-07

Abstract

We present a case study of attitude control for a quadrotor drone and propose the application of reachability analysis to investigate and improve the robustness of the control design. The controller is to be implemented and tested using an experimental platform, the *CrazyFlie*. We intend to use measured data to improve the models employed in reachability analysis.

Category: academic Difficulty: medium

1 Context and Origins

Recent advances in low-power embedded processors, wireless communications and miniature sensors and actuators have increased the interest on the development of drones with a wide range of indoors and outdoors applications: safety, security, defense, inspection, communication links, data acquisition, entertainment, package delivery, not being exhaustive.

Quadrotors are of particular interest when implementing small-scale drones because of the simpler control and stabilization mechanisms and their ability to perform vertical take-off and landing (VTOL), omnidirectional movements, hovering, or low speeds flights [1]. One disadvantage is the high power consumption during the flight.

When approaching the control of quadrotors, we can identify two main problems: the *attitude stabilization* and the *guidance* [2]. The attitude stabilization aims to enhance the vehicle dynamics by feedback control. It can be employed to enhance stability in remote piloting. The guidance has a broader objective that is to control the position and the orientation of the vehicle, aiming the autonomous behavior. Usual approaches in guidance are *interception*, *surveillance* or *rendez-vous* [2]. In general, the attitude stabilization and the guidance problems are treated by separated control loops, being an inner loop related to the first, and an outer loop to the second. Generally, the time constants of the two problems are different, being the attitude stabilization with faster dynamics than the guidance.

^{*}Instituto Militar de Engenharia (IME), Brasil. Visitor researcher to VERIMAG, France.

We develop a case study of attitude control of a quadrotor. In our approach we propose a nested control architecture exploiting the modularity of the model. An inner loop takes care of the angular rates and vertical speed, and an outer loop takes care of the angular orientation and position. In order to investigate the robustness of the controller, we apply reachability analysis [3,4]. We present two nonlinear models for the quadrotor, one based on the Euler angles and the other on quaternions. A linearized model obtained from the Euler angles model is used for control design. On the other hand, a linearized model obtained from the quaternions model is used for reachability analysis. The quaternions model is polynomial and singularity free, when compared to the Euler angles model. This enables the application of many reachability analysis techniques suitable to polynomial systems as, for example, [5] or [12]. In this work we overapproximate the polynomial nonlinearities using McCormick relaxations [6]. Moreover, we will implement the controller into a real experimental quadrotor platform, the CrazyFlie, from $BitCraze^1$, and use measured data to improve the model employed in the reachability analysis. Identification techniques for piecewise affine systems as in [7] are to be used in this step.

Another benchmark for reachability analysis based on a quadrotor is presented in [8]. They define a flight envelope protection used for safety-preserving controller synthesis. In their definition of the flight envelope, they address both attitude stabilization and guidance problems. But they present a nonlinear model that disregards many of the relevant dynamic interactions for the attitude stabilization problem, for example, the Coriolis forces in translational and rotational dynamics. Therefore we believe that the model in [8] is more suited to address guidance problems, while the model presented in this paper is suitable for both attitude stabilization and guidance problems.

This paper is organized as follows. Section 2 presents the quadrotor model and the attitude controller design. Section 3 introduces our approach for applying the reachability analysis. Section 4 presents some remarks on the current results of the work.

2 Brief Description

2.1 Quadrotor Nonlinear Model

Consider a quadrotor where each rotor R_i , $i \in \{1, 2, 3, 4\}$, produces on the airframe a force F_i and a torque τ_i , according to its direction of rotation. The front and back rotors spin clockwise and the right and left rotors spin counterclockwise [1]. We treat a quadrotor with a *cross* "+" configuration, so that the *front* of the quadrotor points towards rotor R_1 , the *back* to rotor R_3 and, when looking from above, the *right* to rotor R_2 and the *left* to rotor R_4 .

For control purposes, the model inputs are the forces and torques produced by the rotors on the airframe [1]: the *Thrust* $F = F_1 + F_2 + F_3 + F_4$, the *Roll Torque* $\tau_{\phi} = l(F_4 - F_2)$, the *Pitch Torque* $\tau_{\theta} = l(F_3 - F_1)$, and the *Yaw Torque*:

¹http://www.bitcraze.se/

 $\tau_{\psi} = \tau_1 - \tau_2 + \tau_3 - \tau_4$, where *l* is the distance from the rotors to the quadrotor center of mass.

The state variables for the quadrotor model are the following:

- The *inertial position* $\vec{P} = [p_n \ p_e \ h]^T$ is measured with respect to the inertial frame \mathcal{F}_i , where p_n is the north position; p_e is the east position; and h is the height $(-z_i \text{ direction})^2$.
- The linear velocity $\vec{V} = [u \ v \ w]^T$, is measured with respect to the body frame \mathcal{F}_b , where u is the x_b -component; v is the y_b -component; and w is the z_b -component.
- The *angular orientation* is represented by quaternions and Euler angles. The quaternion $Q_b^v = [q_0 \ q_1 \ q_2 \ q_3]^T$ represents the orientation of the body frame with respect to the inertial frame. The *Euler angles* are $\Sigma =$ $[\phi \ \theta \ \psi]^T$, where ϕ is the roll angle, θ is the pitch angle and ψ is the yaw angle.
- The angular velocity $\vec{\Omega} = [p \ q \ r]^T$ is measured with respect to \mathcal{F}_b , where p is the x_b -component, or *roll* rate; q is the y_b -component, or *pitch* rate; and r is the z_b -component, or yaw rate.

Quaternions are used instead of Euler angles because they lead to simpler, polynomial, and singularity-free dynamical equations for the quadrotor [9]. Moreover, these polynomial dynamic equations are exploited in this paper to obtain alternative linearized systems for reachability analysis.

The nonlinear model for a quadrotor is defined by the following set of equations:

$$\begin{bmatrix} \dot{p}_n \\ \dot{p}_e \\ \dot{h} \end{bmatrix} = R_b^v \begin{bmatrix} u \\ v \\ w \end{bmatrix}$$
(1)
$$\begin{bmatrix} \dot{u} \\ \dot{v} \\ \dot{w} \end{bmatrix} = \begin{bmatrix} rv - qw \\ pw - ru \\ qu - pv \end{bmatrix} + R_v^b \begin{bmatrix} 0 \\ 0 \\ g \end{bmatrix} + \frac{1}{m} \begin{bmatrix} 0 \\ 0 \\ -F \end{bmatrix}$$
(2)
$$\begin{bmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{bmatrix} = \begin{bmatrix} 1 \sin\phi\tan\theta & \cos\phi\tan\theta \\ 0 & \cos\phi & -\sin\phi \\ 0 & \sin\phi/\cos\theta & \cos\phi/\cos\theta \end{bmatrix} \begin{bmatrix} p \\ q \\ r \end{bmatrix}$$
(3)

$$\begin{array}{c} \dot{u} \\ \dot{v} \\ \dot{w} \\ \dot{w} \end{array} \right] = \left[\begin{array}{c} rv - qw \\ pw - ru \\ qu - pv \end{array} \right] + R_v^b \left[\begin{array}{c} 0 \\ 0 \\ g \end{array} \right] + \frac{1}{m} \left[\begin{array}{c} 0 \\ 0 \\ -F \end{array} \right]$$
(2)

$$\begin{bmatrix} 1 & \sin\phi\tan\theta & \cos\phi\tan\theta \\ 0 & \cos\phi & -\sin\phi \\ 0 & \sin\phi/\cos\theta & \cos\phi/\cos\theta \end{bmatrix} \begin{bmatrix} p \\ q \\ r \end{bmatrix}$$
(3)

$$\begin{array}{c} \dot{q}_{0} \\ \dot{q}_{1} \\ \dot{q}_{2} \\ \dot{q}_{3} \end{array} \right] = \frac{1}{2} \begin{bmatrix} -q_{1} & -q_{2} & -q_{3} \\ q_{0} & -q_{3} & q_{2} \\ q_{3} & q_{0} & -q_{1} \\ -q_{2} & q_{1} & q_{0} \end{bmatrix} \begin{bmatrix} p \\ q \\ r \end{bmatrix}$$

$$(4)$$

$$\begin{array}{c} \dot{p} \\ \dot{q} \\ \dot{r} \end{array} \right] = \left[\begin{array}{c} qr(J_y - J_z)/J_x \\ pr(J_z - J_x)/J_y \\ pq(J_x - J_y)/J_z \end{array} \right] + \left[\begin{array}{c} \tau_{\phi}/J_x \\ \tau_{\theta}/J_y \\ \tau_{\psi}/J_z \end{array} \right]$$
(5)

Equation (1) is the Translation Kinematics, equation (2) is the Translation Dynamics, equations (3) and (4) represent the Rotation Kinematics in terms of Euler angles and quaternions, respectively, and equation (5) is the *Rotation* Dynamics. The above equations can be obtained by considering the physical

 $^{^{2}}$ Details on the modeling are presented in the accompanying expanded version of the paper.

principles of a quadrotor frame and then applying the Newton-Euler or the Lagrangian methods [1]. In Equations (1) to (5), m is the mass of the quadrotor, g is the acceleration of the gravity, and J_x , J_y , and J_z are the x_b , y_b , and z_b axis moments of inertia of the airframe, respectively. Finally, R_b^v is the rotation matrix from frame \mathcal{F}_v to frame \mathcal{F}_b and $R_b^v = (R_v^b)^T$ is the inverse rotation matrix. In the expanded version of the paper, we present the rotation matrices in terms of quaternions and Euler angles and also the unraveled dynamic equations.

2.2 Linearization

In order to perform control design and reachability analysis we use two approaches for the linearization of the quadrotor nonlinear equations.

First, we present the linearization around an equilibrium point, corresponding to the quadrotor being at a static hovering position in 3D space. The basic hypothesis are that $u_0 = v_0 = w_0 = 0 \ m/s$ and $p_0 = q_0 = r_0 = 0 \ rad/s$, and the following relations come from the analysis of the nonlinear equations: $\phi_0 = \theta_0 = \psi_0 = 0 \ rad$, $F_0 = mg \ N$, $\tau_{\phi} = \tau_{\theta} = \tau_{\psi} = 0 \ N.m$, and $(p_{n0}, p_{e0}, h_0) \in \mathbb{R}^3 \ [m]$. The linearized model can be written as the following simple set of linear equations³:

$$\dot{p}_n = u \qquad \dot{u} = -g\theta \qquad \phi = p \qquad \dot{p} = \tau_{\phi}/J_x
\dot{p}_e = v \qquad \dot{v} = g\phi \qquad \dot{\theta} = q \qquad \dot{q} = \tau_{\theta}/J_y \qquad (6)
\dot{h} = w \qquad \dot{w} = -F/m \qquad \dot{\psi} = r \qquad \dot{r} = \tau_{\psi}/J_z$$

The previous linearized model is useful for control design, because of its simplicity. The decoupling of the variables is exploited in the controller design, in order to make nested control architecture. Notice that the rotational part of the nonlinear model presented in [8] is equivalent to the rotational part of the linear model in equation (6). The relevant difference in the translational parts of both models is that the linear velocities in [8] are expressed in terms of inertial frame coordinates.

When applying the reachability analysis to investigate the stability and the performance of the closed loop system, we need a richer model that could better represent the actual system behavior. One option could be to use the nonlinear model in Section 2.1. Notice that this nonlinear model has also uncertainties and unmodelled dynamics, like lift and drag forces [10], and would contribute with some of the possible traces of the state trajectory. Therefore, we propose a piecewise affine model for the quadrotor to be applied in the reachability analysis [4].

Our model exploits the polynomial equations of the quaternions nonlinear model. Notice that the nonlinearities of the quaternion model are essentially quadratic and cubic monomials on the state variables. We use McCormick relaxations [6] to overapproximate these polynomial terms.

 $^{^{3}\}mathrm{We}$ work the Euler angles model because it can be shown that the linearized quaternion model comes up with uncontrollable modes.

Given two variables defined within intervals with lower and upper bounds $x_1 \in [x_1^L, x_1^U]$ and $x_2 \in [x_2^L, x_2^U]$, the McCormick relaxation defines a set of planes for lower and upper bounds for the quadratic monomial $w_{12} = x_1 x_2$ as [6]:

$$\begin{array}{rcl}
w_{12} &\leq & x_1^L x_2 + x_2^U x_1 - x_1^L x_2^U \\
w_{12} &\leq & x_1^U x_2 + x_2^L x_1 - x_1^U x_2^L \\
w_{12} &\geq & x_1^L x_2 + x_2^L x_1 - x_1^L x_2^L \\
w_{12} &\geq & x_1^U x_2 + x_2^U x_1 - x_1^U x_2^U
\end{array} \tag{7}$$

The above inequalities define a convex polyhedron in the space defined by x_1 , x_2 and w_{12} , that overapproximates the values for w_{12} .

As an illustration, we use the McCormick relaxation planes to create a polyhedron to overapproximate the quadratic monomials that appear in the rotation dynamics part of the quadrotor nonlinear model, equation (5). Specifically we approximate the products pr, qr and pq in those equations. We've provided bounds to p, q and r by observing the result of various simulation scenarios and considering the dimensions of the *CrazyFlie*. From this, we've arbitrated that $p^L = q^L = r^L = -1.0 \ rad/s$ and $p^U = q^U = r^U = 1.0 \ rad/s$. We are working on SpaceEx components based on McCormick relaxations to overapproximate other polynomial terms that appear in the quaternions nonlinear model.

2.3 Controller Design

The strapdown sensors available in the CrazyFlie are a rate gyro, an accelerometer, a magnetometer and a barometer. Using sensor fusion we can obtain with certain precision the angular rates, the quaternion, the Euler angles, the linear speeds, and the height [1,10]. We disregard the horizontal position information for the moment.

We've chosen as reference inputs for the attitude controller the height and the orientation of the quadrotor. These references can can be generated by the game controller [11].

The architecture of the attitude controller is shown in Figure 1. We've proposed a nested control architecture. The inner loops are the Angular Rates and the Vertical Speed controllers that act directly on the thrust F and the torques τ_{ϕ} , τ_{θ} and τ_{ψ} . In an outer loop, the Vertical Position and the Angular Orientation controllers receive the references to the height and orientation, and transform them into references for the inner loop controllers.

We are currently working on the rotational part of the controller. We illustrate the performance of the angular rates controller by means of simulations. The simulation has as initial values for $[p \ q \ r]^T$ as $[0.6 - 0.7 \ 0.8]^T \ rad/s$ and as reference inputs $[0 \ 0 \ 0]^T \ rad/s$. The results for variable p is shown in Figure 2, the other variables, q and r behave similarly. The linear velocities reach the desired values with a settling time of less than 0.5s. There is an overshoot of 20% and the linear and the nonlinear systems present very similar behaviors.

Figure 1: Attitude Controller Architecture.

Figure 2: Simulation Results.

3 Key Observations

We intend to use reachability analysis techniques to investigate and improve the robustness of the controller. The analysis is performed using the tool SpaceEx [4]⁴, that is a scalable tool for the reachability analysis for piecewise affine systems.

As a first illustration, the reachability analysis of the angular rates controller is performed with the following set of initial conditions: $-1 \le p \le 1, -1 \le q \le$ 1 and $-1 \le r \le 1$. Termination of the reachability analysis has occurred, therefore the controller shows to be stable and robust to the variations in the plant. A graphical illustration of the result of the reachability analysis for variable p is shown in Figure 3, the other variables, q and r, behave accordingly. The polynomial quaternions nonlinear model can also be exploited by other

⁴http://spaceex.imag.fr/

Figure 3: Reachability Analysis Results.

reachability analysis techniques, like the ones based on Bernstein polynomials [5]. Flight envelopes as in [8] can also be applied for the safety controller design using the quaternions model. Moreover, in [12] the problem of the region of attraction of polynomial dynamic systems is addressed.

4 Outlook

In the following steps we will complete the attitude controller design, using the reachability analysis as a control design support tool. Then we will implement the controller in the *CrazyFlie* and perform measurements of the closed loop system. In a further step, we plan to perform measurements and enhance the proposed piecewise affine model using system identification techniques [7]. In a possible expansion, a reported dependence of the actuators performance on the battery voltage could be exploited in a varying parameter approach [13].

Acknowledgments

The author gratefully thanks the valuable comments and suggestions gently given by Goran Frehse and Oded Maler, from VERIMAG, while preparing this paper.

References

 R. W. Beard, "Quadrotor dynamics and control," Brigham Young University, Tech. Rep., 2008.

- J. H. Blackelock, Automatic Control of Aircraft and Missiles, 2nd ed. John Wiley & Sons, 1991.
- [3] O. Maler, "Algorithmic verification of continuous and hybrid systems," in *IN-FINITY*, ser. EPTCS, L. Holík and L. Clemente, Eds., vol. 140, 2014, pp. 48–69.
- [4] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Girard, T. Dang, and O. Maler, "Spaceex: Scalable verification of hybrid systems," in *Proc. 23rd International Conference on Computer Aided Verification* (CAV), ser. LNCS, S. Q. Ganesh Gopalakrishnan, Ed. Springer, 2011.
- [5] T. Dang and R. Testylier, "Reachability analysis for polynomial dynamical systems using the bernstein expansion," *Reliable Computing Journal, Special Issue: Bernstein Polynomials*, 2012.
- [6] F. A. Al-Khayyal and J. E. Falk, "Jointly constrained biconvex programming," Mathematics of Operations Research, vol. 8, no. 2, pp. 273–286, May 1983.
- [7] S. Paoletti, A. L. Juloski, G. Ferrari-Trecate, and R. Vidal, "Identification of hybrid systems: A tutorial," *European Journal of Control*, vol. 13, pp. 242–260, 2007.
- [8] S. Kaynama and C. J. Tomlin, "Benchmark: Flight envelope protection in autonomous quadrotors," in *Benchmarks of the Applied Verification for Continuous* and Hybrid Systems (ARCH), 2014, available at http://cps-vo.org/node/12114.
- [9] D. H. Titterton and J. L. Weston, Strapdown Inertial Navigation Technology, 2nd ed., ser. IEE Radar, Sonar, Navigation and Avionics. The Institution of Electrical Engineers, 2004, vol. 17.
- [10] R. Leishman, J. Macdonald, R. Beard, and T. McLain, "Quadrotors and accelerometers: State estimation with an improved dynamic model," *Control Systems, IEEE*, vol. 34, no. 1, pp. 28–41, Feb 2014.
- [11] Bitcraze, "Bitcraze wiki," Available on line at http://wiki.bitcraze.se, 2014.
- [12] D. Henrion and M. Korda, "Convex computation of the region of attraction of polynomial control systems." *IEEE Transactions on Automatic Control*, vol. 59, no. 2, pp. 297–312, 2014.
- [13] W. Hanna, "Modelling and control of an unmanned aerial vehicle," Monography for Bachelor of Engineering degree, School of Engineering & Information Technology, Faculty of Engineering, Health, Science and Environment, Charles Darwin University, 2014.

A Companion Files

We've attached to this abstract a zipped file with the following content:

- 1. An expanded version of this abstract providing details on the modeling.
- 2. Matlab / Simulink files for simulation of the angular rates controller, comparing the behaviors of the linear and nonlinear models.
- 3. Matlab scripts and functions for analyzing the McCormick relaxations.
- 4. SpaceEx files containing the models for the reachability analysis.