
formalSpec — Semi–automatic Formalization of System

Requirements for Formal Verification

(Tool Presentation)

Axel Busboom, Simone Schuler, and Alexander Walsch∗

Controls and Embedded Systems Lab, GE Global Research Europe, Garching, Germany
{Axel.Busboom, Simone.Schuler, Alexander.Walsch}@ge.com

Abstract

We present the proof–of–concept tool formalSpec for semi–automatic translation of system require-

ments from controlled natural language into hybrid automata. These can be automatically integrated as

monitor automata with an existing SpaceEx system model.

1 Introduction

In industry, system requirements are usually formulated in natural language or controlled natural
language (CNL). A CNL is a subset of a natural language with a constrained grammar such as to
reduce or eliminate ambiguity. Requirements written in a CNL can be understood across different
professional disciplines (e.g. technical, legal, marketing), but can also be translated into a formal
representation and hence be used along a system engineering tool chain.

In the case of hybrid systems, the translation from CNL into a formal representation needs
to be done manually which introduces the risk of translation errors. In particular, requirements
which explicitly mention time or uncertainties in the environment models, may lead to complex
expressions.

We are proposing a template–based, semi–automated translation of system requirements. The
formalSpec tool is a graphical front–end to SpaceEx [1, 2] which translates system requirements
based on specification templates into hybrid automata. These can be imported into SpaceEx and
coupled to existing SpaceEx system models. We use SpaceEx as the target tool since it provides
the de–facto standard format for machine readable representation of hybrid automata. Further, a
translation tool [3] to other major verification tools exists [4].

This paper focuses on the software tool and attempts to show conceptually how such tools
can help separate the requirements engineering process from the formal verification domain, as
these are typically performed by different organizations with different skill sets in industry. A
more theoretical paper formally proving the equivalence between the specification patterns and
the hybrid automata generated by the tool is currently in preparation.

We briefly describe the state of the art and theoretical background of the requirement for-
malization in Section 2. In Section 3, we explain the graphical user interface, and an example is
presented in Section 4.

2 Requirement formalization

In order to reduce manual intervention in the formalisation of system requirements, we use re-
quirement templates that are mapped to standard monitor automata. These are hybrid automata
which express requirements by means of forbidden states. If the system were to enter a forbidden
state, this would constitute a violation of the corresponding requirement [5].

The use of a CNL notation employing templates for the specification of system requirements
and their (semi–)automatic translation for verification has been proposed earlier. Specification

∗The authors gratefully acknowledge financial support by the European Commission project UnCoVerCPS under
grant number 643921.

Table 1: Specification pattern templates for hybrid systems as used in the GUI.
Start 01: property ::= scope”,”specification”.”

Scope 02: scope ::= ”Globally” | ”After q”

General 03: specification ::= qualitativeType | realtimeType

Qualitative 04: qualitativeType ::= absencePattern | universalityPattern
05: absencePattern ::= ”it is never the case that” p ”holds”
06: universalityPattern ::= ”it is always the case that” p ”holds

Real-time 07: realtimeType ::= ”it is always the case that” (minDurationPattern | maxDu-
rationPattern | periodicPattern | boundedResponsePattern
| boundedInvariancePattern)

08: minDurationPattern ::= ”once” p becomes satisfied, it holds for at least” c ”time
unit(s)”

09: maxDurationPattern ::= ”once” p becomes satisfied, it holds for less than” c ”time
unit(s)”

10: periodicPattern ::= p ”holds at least every” c ”time unit(s)”
11: boundedResponsePattern ::= ”if” p ”holds, then” s ”holds after at most” c ”time unit(s)
12: boundedInvariancePattern ::= ”if” p ”holds, then” s ”holds for at least” c ”time unit(s)”

templates contain predicates which are to be substituted by logical expressions in order to for-
mulate the actual requirements. Dwyer et al. [6] were among the first to introduce qualitative
specification pattern templates and their translation into different logic expressions (e.g. linear
temporal logic). Among others, Konrad and Cheng [7] extended Dwyer’s original patterns to the
real–time domain. Post et al. [8] applied and extended those patterns for the automotive industry.
A generalisation to probabilistic specification patterns was introduced in [9].

For discrete–time systems, tools already exist that allow for the input of CNL expressions
(e.g. in the form of the above mentioned specification templates) and automatically translate
them into formal expressions. Examples for such tools are Stimulus [10], Embedded Specifier [11],
AutoFocus3 [12, 13, 14] and SpeAR [15, 16]. The output of these tools, however, is in the form
of finite state machines, Büchi–automata or general ω–automata, and is not applicable to hybrid
systems, i.e. systems with a combination of discrete and continuous states.

To automatically detect undesired system behaviour in SpaceEx, observers can be added to
the system model. An observer, following the same syntax and semantics as the system model,
is also called monitor automaton. Since the monitor automaton encodes forbidden states, which
must not be reachable by the system, it is semantically equivalent to a system requirement.
The verification of a given set of requirements combined with a given system is successful if the
intersection of the reachable states and the forbidden states is empty. While monitor automata can
be manually added in SpaceEx, we are interested in a format which is closer to natural language,
does not require expert knowledge in SpaceEx when formulating the requirements and lends itself
to industrial system engineering processes.

We adopt a subset of the grammar introduced by Konrad and Cheng [7] since it is widely used
in academia. While we have implemented the pattern shown in Table 1, it would certainly be
possible to extend these by additional specification patterns depending on application needs. The
specification templates for hybrid systems as such do not differ from those for discrete systems.
The novelty of our approach is in the formalization as hybrid automata and their integration with
SpaceEx as a verification tool. We have cross–checked the specification templates by Konrad and
Cheng against a number of hybrid system requirements from different industrial applications to
convince ourselves that they cover the vast majority of requirements encountered in practice. For
details on this analysis, the reader is referred to [17].

3 Graphical User Interface

The formalSpec tool provides functionality to enter and edit requirements based on the spec-
ification templates explained above. The user can choose one of 14 patterns to create a new
requirement, and is then required to replace the predicates p, q and s (cf. Table 1) by actual
logical expressions, and the variable c by an arithmetic expression. The set of requirements being

edited may be linked to an exisiting SpaceEx model.
SpaceEx provides the SpaceEx Model Editor as a graphical front end for visually editing hybrid

system models. A SpaceEx model consists of any number of ‘base components’ and ‘network
components’. A base component specifies a hybrid automaton by its locations with invariants
and flows, and its transitions with guards and assignments. A network component is built from
one or more base components or other network components that can be linked to each other.
Since network components can be nested, they can be used to build hierarchical system models
of arbitrary complexity. Network components can be re–used, e.g. an integrator component once
specified as a base component can be used any number of times when assembling a model. When
performing an analysis in SpaceEx, one component must be specified as the ‘system’ to be verified.
In a hierarchical model, one would typically select the top–level network component, representing
the overall system, as the system, even though there is no requirement to do so.

When specifying invariants, flows, guards and assignments in the SpaceEx Model Editor, one
can use any type of (typically real–valued) parameters. Parameters can be specified as global or
local, depending on whether or not they should be visible to a superordinate network component.
Note that in a superordinate network component, any parameter linked to a subordinate compo-
nent can again be specified as global or local, i.e. visible or invisible to network components at the
next higher level, and so forth.

In the following, we highlight some features of the formalSpec tool:

• The user may open a SpaceEx model file and select a component from this model as the
system. The formalSpec tool will inspect the model file to be opened and automatically
propose the most plausible top–level component as the system, even though the user can
override this choice.

• The tool will then open a tree view of the entire SpaceEx system hierarchy, starting at the
top–level system and descending down the hierarchy of components. Note that in this tree
view, any component specified in the SpaceEx model may appear once, multiple times, or
never, depending on its use in the system hierarchy. The tree view shows all parameters for
each component, with parameters local to the respective component being greyed out.

• In formulating the logical and arithmetic expressions in the requirements, one may use any
parameters used in the SpaceEx system, regardless of whether they are visible to the top–level
system or local to some subordinate component. This is an important feature as in many
cases we will need to specify requirements on some subsystem and using quantities that will
not be accessible at the system level.

• In order to disambiguate parameter names, in analogy to SpaceEx we use the nam-
ing convention system.component.subcomponent.parameter. A postfix (e.g.
subcomponent.parameter) can be used if there is no potential naming conflict. The user
may browse through the tree view of the system by expanding and collapsing components.
By double–clicking on any parameter in the tree view, it will automatically be copied to the
requirement that is being edited.

• The tool provides syntax highlighting to indicate whether the parameters used in the speci-
fications are unambiguous within the SpaceEx system (green), ambiguous (yellow), or non–
existing (red).

• When finished editing, the results can be exported back to a SpaceEx model which consists
of (a) the original SpaceEx model, (b) one base component for each specified requirement,
implementing the corresponding monitor automaton, and (c) one or more ‘system–with–
monitor’ components. A system–with–monitor is a network component linking one or more
monitor automata to the SpaceEx system to be analysed. In the generated monitor automata,
the predicates and variables from the template automata are replaced by the actual logical
and arthmetic expressions specified in the formalSpec tool.

• The user may choose between creating a single system–with–monitor component for all re-
quirements, or creating a separate system–with–monitor for each requirement individually.
The former option has the advantage that all requirements can be simultaneously verified in

a single SpaceEx run, but may cause performance issues when dealing with complex system
models and/or large numbers of requirements. The latter option mitigates these performance
issues, but requires a separate SpaceEx analysis for each requirement.

• An important feature is related to parameters which are local to a subordinate component
and not visible at the system level in the original SpaceEx model: When exporting back to
SpaceEx, the formalSpec tool will modify the system model such that these parameters are
automatically ‘pulled up’. By that we mean that the parameters will be modified to global
parameters in the component that they used to be local to. Further, in all superordinate
network components, the parameter will be linked to and made accessible as a global param-
eter to the next higher component. Unique names will be assigned at all levels. Hence, the
exported model will be structurally identical to the original model, but will have additional
parameters that are accessible at the top–level system and which are linked to the respective
monitor automata in the system–with–monitor components. Note that while the pulling up
of parameters could of course also be done manually, this would in practice make the manual
generation of monitor automata in SpaceEx very cumbersome and prone to error.

4 Example

To illustrate the functionality of the GUI, we will take the reader through an example: As the
hybrid system to be considered we use a strongly simplified model of a wind turbine and its
controller. This system has been submitted as a benchmark problem to ARCH 2016 [18]. The
hybrid nature of this system mainly stems from the switching behaviour of the controller which,
depending on wind speed, will switch between torque–control (below rated power), pitch–control
(above rated power) and a transitional control regime between these two regions. While in [18] a
Simulink implementation of the model is used, we have also generated a SpaceEx representation
of the system, a screenshot of which in the SpaceEx Model Editor is shown in Figure 1. When we
open the same SpaceEx model in the formalSpec tool, it provides us with a browsable tree view
of all parameters used in the SpaceEx model (Figure 2).

As a simple example of a requirement to be validated, let us assume we want to ensure that
the pitch controller works properly in the sense that the actual (measured) pitch angle closely
follows the commanded pitch angle. We obviously need to allow for some tracking error as well
as measurement error. We may decide to quantify one of the requirements in natural language
as follows: ‘The absolute difference between the commanded pitch angle and the measured pitch
angle must never exceed 1◦ for longer than 0.5 seconds.’ Note that this would not be the only
requirement needed to validate the pitch controller: In practice, one would also need to specify
an absolute bound on the instantaneous error, a bound on the steady–state error, on allowable
maximum and minimum pitch angles, maximum allowable pitch rates, and others.

We now need to map this requirement to one of the 14 specification patterns available in
formalSpec. The pattern suitable for this particular type of requirement is a maximum duration
pattern with global scope, one of the real–time patterns described in [7]. Reformulating it using the
templates presented in Table 1, this corresponds to the sequence (01,02,03,08) or — in textual form
— to the pattern: Globally, it is always the case that once p becomes satisfied, it

holds for less than c time units.

The main window of the formalSpec tool is essentially a table in which each row corresponds to
one requirement. It is shown in Figure 3 where we have already created one skeleton requirement
based on the pattern above. Next, we need to replace the placeholders in the template by the
actual expressions, the result of which is shown in Figure 4. When doing this, parameters from
the parameter browser can be copied to the requirements table by double–clicking. As can be seen
from the figure, the tool also allows to assign names and comments to each requirement.

When done editing the requirements, the project can be saved in an XML–format propri-
etary to formalSpec. In addition, it can be re–exported to SpaceEx, the result of which can
be seen in Figure 5. The exported model contains an additional network component called
system with monitor automata which, as subordinate components, contains the original SpaceEx

Figure 1: Simplified model of wind turbine and controller in the SpaceEx Model Editor.

Figure 2: Hiearchical view of parameters of the same system model in formalSpec.

Figure 3: Main window of formalSpec.

Figure 4: Main window of formalSpec with fully specified requirement.

system and in this case a single monitor automaton corresponding to the requirement that we have
specified. Figure 6 shows a view of the generated monitor automaton in which the predicates have
been substituted with the expressions specified in formalSpec.

Note that in this particular example the two parameters happened to be already available at
the top–level system; so the tool simply determined the equivalence between the parameter names
in the subsystem and the top–level system. Otherwise, the tool would have automatically pulled
up any needed parameters and assigned unambiguous names such that they can be accessed by
the system–with–monitor component.

5 Conclusion

We have presented a rudimentary proof–of–concept tool to show how requirements for hybrid
systems can be captured in Controlled Natural Language, automatically translated into hybrid
monitor automata, and combined with a hybrid system model for validation in a tool like SpaceEx.
This should provide a step towards the applicability of hybrid system verification tools in an
industrial systems engineering setting.

Figure 5: SpeceEx Model Editor view of the ‘system–with–monitor’ as a network component.

Figure 6: SpeceEx Model Editor view of the monitor automaton as a base component.

References

[1] G. Frehse et al. Computer Aided Verification, chapter SpaceEx: Scalable Verification of
Hybrid Systems, pages 379–395. Springer, Berlin, Heidelberg, 2011.

[2] G. Frehse. An introduction to SpaceEX v0.8. http://spaceex.imag.fr/documentation/

user-documentation/introduction-spaceex-27, accessed on Sep. 9, 2015.

[3] S. Bak, S. Bogomolov, and T. T. Johnson. HyST: A source transformation and translation

http://spaceex.imag.fr/documentation/user-documentation/introduction-spaceex-27
http://spaceex.imag.fr/documentation/user-documentation/introduction-spaceex-27

tool for hybrid automaton models. http://verivital.uta.edu/hyst, accessed on Sep. 30,
2015.

[4] S. Bak, S. Bogomolv, and T. T. Johnson. HyST: a source transformation and translation
tool for hybrid automaton models. In Proc. Conf. Hybrid Systems Computation and Control
(HSCC), pages 36–42, 2015.

[5] N. Halbwachs, F. Lagnier, and P. Raymond. Synchronous observers and the verification
of reactive systems. In 3rd Int. Conf. on Algebraic Methodology and Software Technology,
AMAST’93. Springer Verlag, 1993.

[6] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property specifications for
finite-state verification. In Proc. 21th Int. Conf. Software Engineering, pages 411–420, 1999.

[7] S. Konrad and B. H. C. Cheng. Real-time specification patterns. In Proc. 27th Int. Conf.
Software Engineering, pages 372–381, 2005.

[8] A. Post, I. Menzel, and A. Podelski. Requirements Engineering: Foundation for Software
Quality, chapter Applying Restricted English Grammar on Automotive Requirements—Does
it Work? A Case Study, pages 166–180. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[9] L. Grunske. Specification patterns for probabilistic quality properties. In Proc. 30th Int.
Conf. Software Engineering, pages 31–40, 2008.

[10] Argosim. Stimulus. http://argosim.com, 2015.

[11] BTC. Embedded specifier. http://www.btc-es.de, 2015.

[12] Manfred Broy, Franz Huber, and Bernard Schätz. AutoFocus — ein Werkzeugprototyp
zur Entwicklung eingebetteter Systeme. In Informatik Forschung und Entwicklung, pages
121–134, 1999.

[13] F. Hölzl and M. Feilkas. Model–Based Engineering of Embedded Real–Time Systems, chap-
ter 13 AutoFocus 3 — A Scientific Tool Prototype for Model–Based Development of
Component–Based, Reactive, Distributed Systems, pages 317–322. Springer, Berlin, Hei-
delberg, 2010.

[14] Fortiss. AutoFocus3. http://af3.fortiss.org, 2015.

[15] SpeAR — specification and analysis for requirements tool. https://github.com/AFifarek/
SpeAR, accessed on March 11, 2016.

[16] L. Wagner et al. SpeAR: Specification and analysis of requirements. In to be presented at
High Confidence Software and Systems Conference, 2016.

[17] S. Schuler, A. Walsch, and M. Woehrle. Unifying control and verification of cyber–physical
systems (UnCoVerCPS), Deliverable D1.1 — Assessment of languages and tools for the auto-
matic formalisation of system requirements. http://cps-vo.org/node/24197, accessed on
March 11, 2016.

[18] S. Schuler, F. D. Adegas, and A. Anta. Benchmark problem: hyrid modelling of a wind
turbine. In Proc. of the Workshop on Applied Verification for Continuous and Hybrid Systems
(ARCH), submitted, 2016.

http://verivital.uta.edu/hyst
http://argosim.com
http://www.btc-es.de
http://af3.fortiss.org
https://github.com/AFifarek/SpeAR
https://github.com/AFifarek/SpeAR
http://cps-vo.org/node/24197

	Introduction
	Requirement formalization
	Graphical User Interface
	Example
	Conclusion

