
A Hybrid Testbed for Verification of
Cyber-physical Production Systems

Christof J. Budnik1, Sebastian Eckl2*, and Marco Gario1
1 Siemens Corporate Technology, Princeton, NJ, USA

2 Technical University of Munich (TUM), Munich, Germany
{christof.budnik, marco.gario}@siemens.com, sebastian.eckl@tum.de

Abstract
Cyber-physical production systems (CPPS) build a network of industrial automation

components and systems to enable individualized products at mass production costs.
Failures or vulnerabilities in CPPS can be life threatening and can cause physical
damage while hiding the effects from monitors. Thus, software verification and
validation methods need to analyze the dynamics and behavior of CPPS. This work
presents a hybrid testbed combining the monitoring of the real physical CPPS
components together with its virtual counterparts in simulation.

1 Introduction
Future industrial automation is enabling new production processes where products will drive their

production by cyber-physical production systems (CPPS) without the need for human intervention
(J.O. Kephart and D. M. Chess, 2003). Thus, the CPPS need to be able to effectively and efficiently
fulfill its specified goals under changing conditions.

CPPS intrinsically combine hardware and physical systems with software and networking. Today,
the modeling and design abstractions used for hardware and physical systems are entirely different
from those used for software, and few modeling or design languages support mixtures of the two. This
makes it harder to model, harder to design, and harder to analyze CPPS than homogeneous systems in
addition to their uncertain behavior adapting to their environment.

The operation of field tests for CCPS is usually an expensive, time and resource consuming effort.
However, an entire production unit can be tested under realistic conditions and particularly in
cooperation with additional production units. But, thereby only a limited set of potential scenarios can
be realized, mostly ignoring possibly hazardous situations. Existing Model-, Simulation-, and
Hardware-in-the-Loop approaches and virtual test drive setups instead are executed in a rather static
(virtual) environment, providing the ability for safely testing of even dangerous scenarios.

* Majority of his work has been achieved during the internship with Siemens Corporate Technology.

Unfortunately, they are usually limited to a specific subset of a CPPS entire functionality, and
therefore lack in opportunities for testing the big picture. Therefore, this contribution of a testbed,
combining the advantages of both virtuality and reality, by placing an entire CPPS together with its
virtual counterparts into the same simulation, sounds very promising. Our proposed testbed solution
will enable test engineers to:

· Model the test environment and link it with the behavior model. The environmental
model will be used to generate variations of environmental changes. Key test points shall
be defined in the environmental model which affects the system behavior.

· Feed the environmental changes as inputs to the system by devised control mechanisms
in a simulation environment to verify its behavior. Testing can be done completely in the
simulation or with the actual system control hardware in the loop.

· Monitor the behavior and perceived environment of the system under test in order to
dynamically direct the system under test towards generated environmental conditions to
verify its correctness.

2 Motivation and Background
The main objective for verification is to ensure the reliable operation of the Programmable Logic

Controller (PLC) software in Structured Control Language (SCL) (Berger, 2012) that controls the
CPPS and provide confidence that the compound solution, as a collective result of collaborating
production units, is operating correctly and effectively in its targeted dynamic production
environment. Thus, the verification is to ensure that the behavior of such a system in response to
disruptions (or failures) and changes in the environment meets its stated objectives.

Perhaps the most significant difference between verification of traditional software and verification
of CPPS is that the correctness of traditional software is defined with respect to a fixed and known
machine model, whereas especially robots and other CPPS operate in environments that are at best
partially known by the system designer. In these cases, it is practical to verify that the system acts
correctly given the knowledge that it has, avoiding the problem of modelling the real environment
(F.T. Chan, 1996).

Siemens Corporate Technologies has developed a novel system testbed for cyber-physical systems
that is utilizing simulation. The simulation is used as an external input to the system under test
representing its environment. The environment is modeled by the structure and behavior of its real
world objects under consideration and their relationship to each other defined by constraints. A
model-based testing approach is generating different environmental conditions under which the CPPS
is verified using simulation.

2.1 Model-based Testing
Model-based testing approaches (or MBT) have been used in support of test generation. Tests are

produced based on abstract test cases from high-level system specifications written in standardized
specification languages such as UML. Model-based testing in this context can be seen as a black-box
test approach. The specification and execution of test cases on a model level verification and problem
analysis is much easier and more efficient than it is for traditional, code-centric test cases. Model-
based testing approaches automate many of the testing activities, including creation of test
architectures, generation and execution of test cases.

For example, Tedeso™ (former TDE/UML (J. Hartmann, 2005)) is an extensible model-based
testing tool that supports different testing stages: from system specification, model checking, test

generation, and code and report generation. A distinctive feature of Tedeso™ is its support for
extensibility and configurability of its features by means of plug-ins. Through the use of these
mechanisms, Tedeso™ can be integrated with existing tools and approaches.

While MBT approaches focus on test generation strategies and coverage algorithms, they do not
address the generation of environmental configurations.

2.2 Simulation based Testing
Researchers concerned with the verification of software by simulation often acknowledge the need

for software testing, but typically do not present techniques beyond what is common for all types of
software (Sargent, 2005), such as test-driven development or using code reviews. Others have focused
on using formal specifications (W. T. Tsai, 2005), as have researchers investigating the verification of
optimization software, as in compiler optimizations. However, the use of formal languages to act as
an oracle can be challenging from a practical point of view, given that the specification often needs to
be complete in order to be useful which cannot be assumed for CPPS. Additionally, the creation of a
formal specification can be fairly complex after the software has already been developed, and requires
intimate knowledge of the algorithm being implemented.

3 Cyber-physical Simulation-based Testbed
We present a testbed that is built out of components that are also used by Siemens to train PLC

experts. The testbed simplifies the co-testing of PLC software for CPPS by combining simulation and
physical monitoring. The simulation is using a physics engine which main objective is to detect
disastrous failures such as collisions between production units and their environment.

The testbed enables a staged approach to verify the PLC control software first in a virtual
environment, having then the real and simulated environment run in parallel in order to compare their
behavior. Detecting different behavior enables the simulation to stop the real system and prevent it
from major damage. In the last stage, the system would be run in the real world only. However, the
previous stages shall have significantly reduced the risk in finding disastrous failures during the last
stage.

3.1 Testbed Architecture and Setup
The testbed architecture is based on the concept of hybrid simulation, by likewise combining

physical and virtual components within the context of a distributed, embedded, real-time system to be
tested. Conceptually, the setup can be divided into the following parts (see Figure 1):

· A software application under test

· A physical test setup (plant model and physical operating control)

· A virtual test setup (plant model in simulator and virtual operating control)

· A plugin for a test generation framework

The software application under test is executed on a physical controlling element. The physical
controlling element is interconnected with both the physical and the virtual testbed via network. The
physical test setup is made up of a physical plant model and can be manipulated by a physical
operating control unit. Within its virtual counterpart, the same plant model is implemented inside a
simulator. Besides this, the virtual test setup also hosts a test controller component, which is
responsible to send (test) instructions to the physical controlling element via a virtual operating

control (test execution engine). It further exchanges required setup data between the test generation
framework and the simulator and receives data from the physical controlling element for continuous
test (setting) adaptation and comparison of results and original expectations (feedback control).

Figure 1. Testbed Architecture

The testbed setup hereby reflects an industrial automation system, exemplary consisting of a
production line and utilizing typical industrial components like actuators (e.g. conveyor belts, robots),
sensors (e.g. ultrasonic, induction) and associated controlling elements. Both physical and virtual
components are interconnected with controlling elements via Industrial Ethernet, a specific Ethernet
standard developed for (harsh) industrial requirements and providing protocols that allow for
determinism, low latency and real-time control to deliver data under tight time constraints. Within the
industrial environment, controlling elements are depicted in terms of PLCs, particular embedded
control units that can act as a hard real-time system, consuming sensor input and calculating actuator
output within a fixed period of time. The physical representation of the industrial automation system
to be tested is based upon selected industry training models, creating a small-scale model of a physical
plant. Its virtual counterparts are implemented in form of three-dimensional models inside a physics-
based simulator environment. Both physical and virtual sensor data can be sent to the controlling
elements and are assimilated similarly. The resulting actuator output can be visualized in real-time,
either on the simulator or on the physical plant model. Physical and virtual operating control units are
both SCADA-based. Both, the physical and virtual test setup act in form of I/O devices.

The according reference implementation realizing the testbed setup (see Figure 2) is deployed by
the following components:

· A management environment (test engineering machine)

· A physical industry training model (e.g. fischertechnik™ industry training models, I/O
device, SCADA-based Human Machine Interface (HMI))

· A virtual test environment (virtual test machine)

· An (Industrial) Ethernet switch

· A software application under test (e.g. PLC)

The management environment is hosting the Windows-based Siemens IDE (TIA Portal/STEP 7)
on a separate PC workstation. The IDE is required for programming and transferring the software
applications under test to the physical controlling elements, e.g. to PLC(s) and I/O device(s).
Furthermore, an abstract network definition containing controlling and data collection elements is
generated. Via a specific interface (TIA Openness), relevant data concerning the network and device
setup can be exported as input to the test generation framework.

The physical industry training model consists of sensing and actuating elements typical for the
field of industrial automation, but manufactured in a much smaller scale than usually deployed on
traditional sites. The physical test setup consists of industrial training models from fischertechnik
GmbH. As physical sensors and actuators in real industrial automation setups are mostly implemented
in a distributed manner, within the physical test setup they are also not directly connected to the PLC
itself, but rather to a distributed I/O device, which allows for remote access from a PLC via Industrial
Ethernet. Both PLC and distributed I/O device are descended exemplarily from the Siemens
SIMATIC product line (SIMATIC S7-1200, SIMATIC ET 200MP) and backed by several digital
input/output, motor control and timer modules to connect physical sensors and actuators. The physical
test setup as a whole can thus be abstracted in form of a physical I/O device.

Figure 2. Testbed Realization Setup

As exemplary Industrial Ethernet standard for connecting real-time components like PLC,
distributed I/O device (physical test environment) and virtual test environment, the PROFINET
automation protocol is utilized.

The virtual test environment is used for hosting a Linux-based virtual test machine on a separate
PC workstation, which in contrast acts as a virtual I/O device. It consists of a robotic simulator (e.g.
V-Rep) (Freese, 2013), a SCADA-based HMI suite (e.g. WinCC Open Architecture), a test execution
and feedback control unit and the test controller software which supports a plugin for test generation
framework. Section 0 will describe a sample test generation framework that can be used as solution.

3.2 Lessons Learned and Conclusion
The main challenge of the testbed arises from the combination of physical and virtual components

within the context of a distributed, embedded, real-time system. Thereby, (hard) real-time capable
hardware components (e.g. PLC) have to be connected to a PC-based test setup, which is running
software-based components that are only supporting non-real-time behavior by design. Thus, the
interaction of both worlds requires a precise adjustment of the simulation step regarding the pace of
individual physical control components and simulator elements.

Industrial automation test environments usually focus on the creation of a PC-based device that
mimics or enhances the behavior of a PLC in software. The soft PLC therefore has to be implemented
as a PROFINET IO-controller, controlling a physical system under test instead, which is connected to
an I/O device. The testbed architecture depicted in Section 3.1 swaps the test objective by switching
this premise and placing the PLC application itself under test. Therefore, it is important to implement
the virtual test environment in form of a PROFINET IO-device, which is backed by a scenario-
specific simulator (e.g. robotic simulator). According to the above mentioned setup, only a simulator’s
API has to be adapted to the PROFINET software interface.

Despite the initial investment regarding analysis and evaluation of possible components and their
interactions as well as the implementation of the testbed, the possibilities of safely and automatically
testing myriad (and even hazardous) situations outweigh the effort. Combining the novel approach of
feedback-based automatic creation of simulator-specific model descriptions with the proven concept
of autonomous test case generation allows for efficient testing of CPPS at an unprecedented scale.

3.3 Model-based Test Generation Framework
Model-based testing (MBT) using Tedeso™ has been applied within Siemens business domains to

effectively automate testing (Silva Filho & Budnik, 2012). We plug in Tedeso™ as MBT solution for
test case generation. In this case the test cases are given as environmental conditions for the
simulation under which the PLC code is verified. With Tedeso™ as our model-based testing
framework, at first an abstract model of the industrial automation system can be created. A specific
environment generator is then used to transform the abstract model to a simulator-specific model
description, which is sent to the simulator component. A code generator also translates abstract test
cases into concrete test instructions, which are performed upon individual operating control units
inside an execution engine.

Figure 3. Supported MBT Verification by the Testbed

The environmental conditions are modeled as classes where each entity of the simulation
environment can have properties such as size or max number of entities allowed and their methods of
dynamic behavior implementation. Stereo-typed notes are used to define environmental constraints of
and between simulation entities. For automated test environment generation the environmental MBT
model is run through the test generation process, with a pre-generation step that solves the
environmental constraints.

The task of the test generator is to resolve the constraints leading to a set of environmental
conditions which are the test cases. During test execution the physics engine is checking on the

achieved goals of the system. Such feedback can be given by the physics engine for instance for
collision detection of the system with its environment. The approach allows testing of the system
under various conditional environments in a simulated run. Current research work is focusing on
optimizing the generated test cases covering critical and exceptional scenarios from real world.

4 Outlook on the use of Formal Verification
Understand how to better combine formal verification and simulation is one of the directions that

we aim at exploring in the future. The controller interacts with the plant through the use of sensors
and actuators. A first level of formal verification techniques can be applied (Tim Lange, 2013), (B.
Fernández Adiego, 2015) to study the controller by considering a very abstract plant in which any
behavior of the input/output is possible. These approaches are sufficient to find bugs in the code, but
cannot be used to identify bugs in the design, since this requires reasoning by considering both the
controller and the plant. Work in this area has focused on the concept of Hybrid systems verification.
However, one of the challenges in performing these types of verification, comes from the difficulty of
specifying the formal model describing the plant. In our opinion, this is the biggest road-block
hindering the adoption of formal methods within these production systems.

Our goal is to use the simulated environment in order to simplify the formal description of the
plant (to some extent of abstraction) by reusing information used to build the simulation. As a second
step, we plan to use the simulation in order to increase our confidence on the correctness of the formal
model.

Modern simulation frameworks (e.g., Modelica (Fritzson, 2010)) rely on libraries of components
in order to speed-up the construction of the simulation. These systems feature massive libraries of
components coming from multiple domains. By equipping these components with a simplified formal
description, it could be possible to derive a high-level formal model of the plant automatically from
the simulated model. The formal model of the plant, together with the formal model of the controller
(derived automatically from the PLC code), can then be verified using theorem proving and model-
checking techniques (Fulton, 2015), (Cimatti, 2015), (Tiwari, 2012). Depending on the level of
abstraction of the model, we might run into spurious counter-examples, i.e., counter-examples that do
not exist in the real system but only in the abstract model. Spurious counter-examples can then be
validated against the simulation model and, when shown spurious, the formal representation can be
refined to exclude them.

Our second step is to use the simulation to validate the formal model, and validating counter-
examples is a simple example of how this can be beneficial for the formal side. More in general, from
the formal model of the plant we can build runtime monitors (S Mitsch, A Platzer, 2016), that can be
executed in the simulated environment for a massive amount of scenarios. This process will allow us
to validate the formal model, and would not be possible if we had to execute these monitors directly
on the physical plant. The process becomes significantly more useful if the simulation model has been
fine-tuned and synchronized against the physical plant. A typical example of this would be changes to
the code of the controller after the system has been deployed. These changes can be formally verified
against a formal model that has been extensively validated through simulation. The simulation, in
turn, would have been validated against the system through hours of execution.

Many questions need to be addressed in order to effectively combine formal verification and
simulation techniques. Nevertheless, having a realistic testbed will allow us to better characterize the
problems, and create interesting benchmarks to drive the development of tools.

References
B. Fernández Adiego, D. D.-C. (2015). Applying model checking to industrial-sized PLC programs.

IEEE Transactions on Industrial Informatics, 1400-1410.
Berger, H. (2012). Automating with STEP 7 in STL and SCL: SIMATIC S7-300/400 Programmable

Controllers. Wiley.
Cimatti, A. e. (2015). HyComp: An SMT-based model checker for hybrid systems. International

Conference on Tools and Algorithms for the Construction and Analysis of Systems.
Heidelberg: Springer Berlin.

CP1616 & DK-16x. (n.d.). Retrieved from
https://support.industry.siemens.com/cs/document/21626318/cp-1616-and-dk-16xx-pn-io-
development-kit-released-for-delivery?dti=0&lc=en-WW

F.T. Chan, T. C. (1996). Proportional sampling strategy: guidelines for software testing practitioners.
Inf. Softw. Technol. 38 (12), 775–782.

Freese, E. R. (2013). V-REP: a Versatile and Scalable Robot Simulation Framework. Proc. of The
International Conference on Intelligent Robots and Systems (IROS).

Fritzson, P. (2010). Principles of object-oriented modeling and simulation with Modelica 2.1. John
Wiley & Sons.

Fulton, N. e. (2015). KeYmaera X: an axiomatic tactical theorem prover for hybrid systems.
International Conference on Automated Deduction. Springer International Publishing.

J. Hartmann, M. V. (2005). A UML-based approach to system testing. Innovations in Systems and
Software Engineering, 12-24.

J.O. Kephart and D. M. Chess. (2003). The vision of autonomic computing. Computer, 41-50.
PROFINET System Description. (2009) PROFIBUS Nutzerorganisation e.V.
S Mitsch, A Platzer. (2016). Verified runtime validation of verified cyber-physical system models.

Verified runtime validation of verified cyber-physical system models.
S. R. Dalal, A. J. (1999). Model-based testing in practice. Proceedings of the 21st international

conference on Software engineering.
Sargent, R. G. (2005). Verification and validation of simulation models. In Proc. of the 37th

conference on winter simulation, 130–143.
Silva Filho, R., & Budnik, C. (2012). An Integrated Model-Driven Approach for Mechatronic

Systems Testing. IEEE International Conference on Software Testing, Verification and
Validation, (pp. 447-457).

Snap 7. (n.d.). Retrieved from http://snap7.sourceforge.net/
TIA Openness. (n.d.). Retrieved from

https://support.industry.siemens.com/cs/document/108716692/tia-portal-openness%3A-
introduction-and-demo-application?dti=0&lc=en-WW

TIA Portal/STEP 7. (n.d.). Retrieved from https://www.industry.siemens.com/topics/global/en/tia-
portal/Pages/default.aspx

Tim Lange, M. R. (2013). Speeding Up the Safety Verification of Programmable Logic Controller
Code. Haifa Verification Conference, (pp. 44-60).

Tiwari, A. (2012). HybridSAL relational abstracter. International Conference on Computer Aided
Verification. Heidelberg: Springer Berlin.

W. T. Tsai, X. L. (2005). Simulation verification and validation by dynamic policy enforcement. In
Proc. of the 38th annual Symposium on Simulation, 91–98.

