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Abstract

The artificial pancreas concept automates the delivery of insulin to patients
with type-1 diabetes, sensing the blood glucose levels through a continuous glucose
monitor (CGM) and using an insulin infusion pump to deliver insulin. Formally
verifying control algorithms against physiological models of the patient is an impor-
tant challenge. In this paper, we present a case study of a simple hybrid multi-basal
control system that switches to different preset insulin delivery rates over various
ranges of blood glucose levels. We use the Dalla-Man model for modeling the
physiology of the patient and a hybrid automaton model of the controller. First,
we reduce the problem state space and replace nonpolynomial terms by approxi-
mations with very small errors that serves to simplify the model. The model still
remains nonlinear with up to 9 state variables.

Reachability analysis on this hybrid model is used to verify that the blood
glucose levels remain within a safe range overnight. This poses challenges, including
(a) the model exhibits many discrete jumps in a relatively small time interval, and
(b) the entire time horizon corresponding to a full night is 720 minutes, wherein
the controller time period is 5 minutes. To overcome these difficulties, we propose
methods to effectively handle time-triggered jumps and merge flowpipes over the
same time interval. The evaluation shows that the performance can be improved
with the new techniques.

1 Introduction

The artificial pancreas concept refers to a series of increasingly sophisticated de-
vices that automate the delivery of insulin to patients with type-1 diabetes in a
closed loop, automatically responding to changes in the patient’s blood glucose
levels and activities such as meals and exercise [28, 16, 33]. Currently, patients
self-regulate their own insulin delivery in response to their blood glucose levels
measured through a “finger-stick” blood glucose meter or a continuous glucose
monitor [46, 9]. Short-term risks include extremely low blood glucose levels called
hypoglycemia, technically defined as blood glucose levels below 70 mg/dl and high
blood glucose levels called hyperglycemia that occur when blood glucose levels are
above 180 mg/dl. Hypoglycemia can lead to seizures, loss of consciousness, coma
or even death in extreme cases. Extreme hyperglycemia involving blood glucose
levels consistently higher than 300 mg/dl can lead to a dangerous condition called
ketoacidosis. Long term risks of elevated blood glucose levels include widespread
damage to critical organs such as kidneys, heart and the nervous system. As a
result, the need to maintain blood glucose levels inside a relatively narrow range
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Figure 1: Overview of the key components of an artificial pancreas control system.
b(t): external user commanded insulin, u(t): insulin infused to patient, G(t): blood
glucose level of the patient, n(t): sensor measurement error (noise), Gs(t): glucose level
estimated/reported by sensor, uc(t): insulin infusion commanded by the algorithm.

requires the patients to periodically monitor their blood glucose levels and adjust
their insulin dosages [9]. This can be complicated during night time when the
patient is asleep, during meal times when the patient ingests significant amounts
of carbohydrates, and during strenuous exercise.

Figure 1 shows the overall closed loop at a glance. Typical artificial pancreas
systems use continuous glucose monitors to measure blood glucose levels peri-
odically, and insulin pumps to deliver artificial insulin analogs at precisely pro-
grammable rates over time. To close the loop, a control algorithm uses the sensor
readings to automatically decide the future insulin delivery. The design of control
algorithms is complicated by many factors including (a) the presence of large unan-
ticipated disturbances such as meals and exercise, (b) the action profile of insulin
has delays including peak action two hours after infusion and persistence up to 7
hours. Thus, insulin delivered at any point in time incurs a nontrivial delay before
it begins to act, and will continue to act long after it is potentially “needed”, and
(c) the continuous glucose monitors are noisy and prone to systematic errors in-
cluding dropouts and pressure induced sensor attenuation [21]. These errors affect
the insulin dosing decisions made by the algorithm.

At the same time, the artificial pancreas is safety critical. Excess insulin de-
livered to the patient can carry with it severe risks associated with hypoglycemia.
On the other hand, insufficient insulin delivery can lead to elevated glucose levels
for long periods of time, risking longer term consequences to the patient.

Closed-loop functional verification seeks to verify that the closed loop formed
by the composition of the software with the glucose sensors, insulin pump and the
patient satisfies important safety and liveness properties. An example of such an
assertion includes “there will be no insulin delivered when the blood glucose level
is less than 70 mg/dl”. The properties in question can involve real-time liveness
properties as well. For example, “If the blood glucose level falls continuously for
at least 30 minutes and the blood glucose level is less than 180 mg/dl, then the
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Table 1: An overview of selected differential equation-based modeling approaches for
human insulin-glucose regulation.

Model Name Vars Remarks

Bergman 3 2 insulin + 1 glucose compartment [3, 4]
Li (DDE) 2 1 insulin + 1 glucose compartment [34, 31]

delays between glucose bolus and insulin response.

Cobelli 11 Comprehensive model including glucagon
and renal function submodels [15, 17].

Sorensen 19 Comprehensive model with brain, vascular,
and renal submodels [47].

Hovorka 11 Comprehensive model with brain, endogenous glucose
and renal submodels [27, 26, 52].

Dalla-Man 10 Comprehensive model with brain, endogenous glucose
and renal submodels [18, 39].
including counter-regulatory processes [38]

pump should be shut off”.
In this paper, we present the Dalla-Man et al. model for human insulin glucose

regulation and a simple multiple basal control system. We present some safety
properties of the system. Next, we use the Flow* tool to perform a reachability
analysis of the resulting closed loop. Finally, we review future challenge problems
that will be useful in this space.

2 Related Work

The broader area of closed loop medical devices has received a lot of recent interest
from the formal verification community. This started with work on pacemakers and
implantable cardiac defibrillators (ICDs) that includes hybrid automata models for
excitable cells in the heart [43], leading to approaches that employ these models
to test closed loop systems [41, 30, 29]. We focus on reviewing the current state-
of-the-art for verifying artificial pancreas controllers.

Human Insulin-Glucose Models: There have been many attempts to math-
ematically model how blood glucose levels respond to infusion of insulin using
ordinary differential equations (see Table 1). Examples include the well-known
Bergman minimal model [3, 4], Dalla Man et al. model [37, 18, 38] and the Hov-
orka et al. model [27, 52]. These models incorporate features including the effect
of meals, and more recently, the effects of exercise on the blood glucose levels [38].
In fact, the concept of in silico pre-clinical trials involves using these models to
test control algorithms over “virtual subjects” by simulating a (virtual) clinical
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protocol [36, 42]. The simulation uses fixed meal timings, amounts and boluses,
but varying patient parameter sets that are meant to model inter-patient varia-
tions. The simulations collect statistics on performance measures such as the time
in euglycemic range to pre-judge the efficiency of the control algorithm and evalu-
ate suggested changes. However, we note that the main objective of these trials is
not to test the correctness of the closed loop per se. Beyond ODE-based models,
there have been attempts at using delay differential equations (DDEs) (Cf. [34, 31]
for instance) and fractional-order models [25].

Verification and Falsification Efforts: The broader area of hybrid sys-
tems verification has seen promising model checkers such as SpaceEx for affine
hybrid systems [23] and tools such as dReach, CORA, NLToolBox and Flow* for
nonlinear hybrid systems [2, 50, 32, 13].

Chen et al. study a PID-based closed loop system meant for intraoperative
use in patients. They use the dReal SMT solver [24] to find patient parameter
ranges and ranges for controller gains for which a PID controller is proven to be
safe with respect to specified safety properties [10]. The use of dReal SMT solver
provides an exhaustive guarantee that all behaviors of the model are accounted for.
The work of Chen et al. represents an important proof of concept that exhaustive
safety verification required for proving the correctness of artificial pancreas control
algorithms can, in principle, be performed by existing tools for nonlinear hybrid
systems. However, major disturbances including patient meals and sensor noise
that are common causes of algorithmic failures are not treated in their study.

Our past work in this space has focused on the problem of falsification rather
than verification. Through falsification, we perform a best effort search focused on
discovering behaviors of the closed loop system that violate a key property of inter-
est specified using a real-time temporal logic. In the limit, falsification techniques
either terminate with a counterexample to the property of interest or run for a long
time without discovering any violations. In the latter case, it can output useful
information such as the least robust trace but cannot conclude if the property is in
fact valid for the system under test. Recent work on falsification uses the notion of
temporal logic robustness [22, 20] to provide a real-valued distance to satisfaction
or violation for a signal with respect to a property expressed in MTL/STL. This
has been incorporated in tools such as S-Taliro [40, 1] and Breach [19] that search
for falsifying traces through minimizing robustness of the trace. Even though fal-
sification uses a simulation model such as the Dalla Man model, the final result is
a property violation rather than a proof.

In joint work with Cameron and others, we have studied the use of falsification
techniques for verifying closed loop control systems for the artificial pancreas [8].
Our initial work investigated a PID controller proposed by Steil et al. [51, 49, 48]
based on published descriptions of the control system available. The simulation
environment incorporates this controller in a closed loop with models of the pa-
tient [39], the sensors and actuators. We studied nearly six different temporal
properties of the closed loop and obtained falsification for three of them. However,
we could not falsify the remaining three properties that governed the absence of
prolonged hypoglycemia and hyperglycemia in the patient.

Another recent study [44] was performed to test a predictive pump shutoff con-
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Figure 2: Overall closed loop controller setup for the artificial pancreas with patient
and meal models and a multi-basal controller.

troller designed by Cameron et al. [7] that has undergone outpatient clinical trials,
recently [35]. This study involved the entire controller software as is, without any
modifications. At the same time, the closed loop simulation permits us to pose a
rich set of questions that compare the closed loop performance with a correspond-
ing open loop under the same meal inputs and physiological model conditions.
The falsification discovered adverse noise patterns in the CGM sensor that could
trick the Kalman filter into predicting inaccurate forecasts for the future glucose
value, and thus prevent appropriate pump shutoff/resumption. At the same time,
critical properties such as not commanding excess insulin when the patient is in
hypoglycemia could not be violated. The study concluded the need to investigate
these violations under more realistic patterns of CGM noise.

In this paper, we study a simpler hybrid control system that switches between
multiple basal levels based on ranges of blood glucose values reported by the sensor.
The control system is very simple to model using automata. The focus of our
work is to explore exhaustive verification in the presence of sensor noise and meal
disturbances using a nonlinear model. We demonstrate modifications to the Flow*
tool that enable us to successfully carry out this verification task within half an
hour for each run of the Flow* tool.

3 Model and Its Simplification

Figure 2 shows the overall block diagram of the model including the Dalla-Man
model for insulin glucose regulation, a meal model for the gut absorption of ingested
meals and the controller that manages the insulin infusion level as a function of
the current glucose level.
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Figure 3: (Left) Meal model ODE in Eq. (1) simulated for different meal CHO amounts
and (Right) simulations are scaled down by the amount of CHO to overlay on the
simulation for D = 5 gms of CHO.

3.1 Meal Absorption Model

We first examine the meal absorption model that models the glucose rate of ap-
pearance um(t) corresponding to a meal with D grams of Carbohydrates (CHO)
at time t = tm. The original model is taken from Dalla man et al [37] has three
state variables qsto1, qsto2, qgut which model the amount of glucose in solid phase
in the stomach, liquid phase in the stomach and the intestine, respectively. These
are initialized to 0 at t = 0. Their dynamics are modeled as

.
qsto1 = −k21 · qsto1 +D · δ(t− tm)

.
qsto2 = −kempt(qsto1 + qsto2) · qsto2 + kmax · qsto1.
qgut = −kabs · qgut + kempt(qsto1 + qsto2) · qsto2

um(t) = f · kabs · qgut(t)

(1)

Here kempt(·) is a nonlinear function given by

kempt(q) = kmin +
1

2
· (kmax − kmin) · {tanh(α(q − b ·D))− tanh(β(q − c ·D)) + 2}

Note that the impulse δ(t) = 1 whenever t = 0 and 0 otherwise, modeling the in-
gestion of the meal as an impulse. Following recommendations provided elsewhere,
we model this as a square wave shaped function lasting for td = 15 minutes, with
the carbohydrates ingested at a rate of D

15 grams/minute over this time period.
The values of the parameters k21, kmax, kabs, kmin, α, β, b, c are estimated by fit-

ting to tracer labeled meal data collected from nearly 41 subjects [37, 18].
The presence of tanh function makes the model harder to work with inside a

set-valued verification tool. Figure 3 shows the rate of appearance of glucose um(t)
as a function of time for meals with D = 5, 10, . . . , 30 grams of CHO, ingested at
tm = 10 minutes. We simplify the model considerably by noting two properties of
the model, empirically using the published parameter values.

1. Multiphase response to meals: we note that there are six easily identified
qualitative phases in the meal absorption model and further more the switch-
ing time is mostly invariant to the meal composition.
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Figure 4: The piecewise spline approximation of the meal response Eq. (2) shown
against the original meal response from ODE (1) (dashed line).

2. Scaling property: the response for a meal with λD grams of CHO is very
close to λ times that of a meal with D grams of CHO.

We exploit these properties and fit a piecewise quadratic function um,1(t) so
that we can simply obtain

um(t) = Dum,1(t− tm), for meal at time tm .

Here, the function um,1(t) is fit using a regression model based on simulating
the ODE in (1).

um,1(t) =



0 t ≤ 0

1.141× 10−4t2 + 6.134× 10−6t 0 ≤ t ≤ 30

5.25× 10−5t2 − 7.468× 10−3t+ 0.281 30 < t ≤ 80

1.245× 10−7t2 − 9.112× 10−5t+ 2.648× 10−2 80 < t ≤ 360

−6.307× 10−5t2 + 0.0483t− 9.190 360 < t ≤ 400

3.553× 10−6t2 − 3.423× 10−3t+ 0.824 400 < t ≤ 500

1.113× 10−8t2 − 1.482× 10−5t+ 4.9× 10−3 500 < t ≤ 720

0 t ≥ 720

(2)

Empirically, we note that the piecewise polynomial model in Eq. (2) approxi-
mates the model in ODE (1) within a tolerance of about 0.03D for a meal with D
grams of CHO for 0 ≤ D ≤ 150. Formally reasoning about ODE (1) requires us to
add a suitable interval to the model um(t) from Eq. (2) and even prove a formal
containment relation. We note however, that the original ODE model is itself an
approximation to error prone lab measurements from tracer-labeled meal studies
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and intravenous glucose tolerance tests (IGTT). Since the ODE is but an approxi-
mation of this “ground truth”, we will simply adopt the piecewise quadratic model
as a more convenient approximation for our verification purposes.

3.2 Insulin-Glucose Response Model

We now turn to the insulin-glucose response model. Table 2 shows the state vari-
ables and the ODEs for this model [18]. The model captures many aspects of
human insulin-glucose response including the insulin dependent vs. independent
uptake of glucose, the endogenous production of glucose by the liver, the transport
of subcutaneously administered insulin and subcutaneous glucose levels. It does
not capture the counter-regulatory system including the effects of glucagon, pro-
longed fasting and physical activity. Nevertheless, the model has been approved
by the FDA as a replacement for animal trials. The model depends intimately
on using “virtual patient parameters”: a set of such parameters corresponding
to adult, adolescent and children are available with the commercial UVa-Padova
T1D simulation software. The model shown in Table 2 uses a publicly available
parameter set [18].

Control Algorithm: We consider a simple multi-basal control algorithm based
on the control-to-range paradigm that seeks to adjust the insulin rate to treat ex-
treme fluctuations of the blood glucose levels by switching to progressively higher
insulin rates to treat high BG values and suspending insulin delivery to treat lows.
The template for the controller is shown in Figure 2, wherein the controller switches
between discrete insulin delivery rates depending on the currently sensed glucose
value. These levels can be tuned for a particular patient by carefully examining
their recent insulin pump and continuous glucose monitor (CGM) data. The con-
troller proposed here is a simple automaton-based system proposed as a benchmark
for verification rather than a proposed design for clinical use. However, recent open
source systems such as the OpenAP share some of the features such as setting a
higher or lower basal insulin delivery rate based on multiple factors that include
the current insulin on board in addition to the blood glucose levels.

Clinical Simulation Scenario: We will assume the following scenario for
our in-silico verification setup:

1. Patient ingests a meal with D ∈ [50, 90] grams of CHO at time t = 0.

2. The patient’s initial blood glucose levels can be anywhere in the range [120, 160]
mg/dl at time t = 0.

3. The controller is switched on at that time and runs for 720 minutes (12 hours)
overnight, during which time the patient does not ingest any further meals.

4. The continuous glucose monitor (CGM) is subject to a noise that can be ±10
mg/dl away from the actual value predicted by the model.

We note that the noise model assumes that any possible noise signal within the
range is allowed. This is much more conservative than the CGM errors that are
temporally correlated with each other [21]. On the other hand, miscalibration or
faults can often lead to errors much larger in magnitude than ±10 mg/dl. However,
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Table 2: The Dalla-Man model for insulin glucose response with state variables and
their derivatives.

Var. Meaning Derivative RHS Expression

X Insulin Conc. in re-
mote chamber

−0.0278X + 0.0278(18.2129Ip − 100.25)

Isc1 Subcutaneous insulin
in chamber #1

0.0142Isc1 − 0.0078Isc2 + uI(t)

Isc2 Subcutaneous insulin
in chamber #2

0.0152Isc1 − 0.0078Isc2

Gt Glucose conc. in
“rapidly equilibriat-
ing” tissues

 −0.0039(3.2267 + 0.0313X)Gt(1−
0.0026Gt + (2.5097× 10−6) ∗G2

t )
+0.0581Gp − 0.0871Gt


Gp Glucose conc. in

plasma

[
3.7314− 0.0047 ∗Gp − 0.0121 ∗ Id
−0.0581 ∗Gp + 0.0871 ∗Gt + um(t)

]
Il Portal vein insulin

conc.
−0.4219Il + 0.225Ip

Ip Insulin in plasma −0.315Ip + 0.1545Il + 1.9× 10−3Isc1 + 7.8× 10−3Isc2

I1 Insulin chamber # 1
concentration

−0.0046(I1 − 18.2129Ip)

Id “delayed” insulin
from chamber #1

−0.0046(Id − I1)

Gs subcutaneous glu-
cose conc.

0.1(0.5521Gp −Gs)

we note that no algorithm can be expected perform well under large errors, since the
algorithm cannot, in general, distinguish a faulty sensor reading from an accurate
value. As a result, we seek to verify the closed loop under “reasonable” error
conditions.

Correctness Properties: We will consider important correctness properties
for our work:

• The blood glucose levels should never fall below 70 mg/dl. Levels below 70
mg/dl are called hypoglycemia, and may lead to loss of consciousness or coma.

• The blood glucose levels should never rise above 300 mg/dl. Levels above 300
mg/dl expose the patient to a dangerous condition called ketacidosis.

• The blood glucose should be in the euglycemic range [70, 180] mg/dl during
“wakeup” t ∈ [600, 720].
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4 Reachability Analysis

We introduce the algorithm to compute Taylor model flowpipes which are reachable
set overapproximations for the artificial pancreas model shown in Figure 2.

We call a set which consists of all reals between two rational bounds a, b such
that a ≤ b an interval, and denote it by [a, b]. A Taylor Model (TM) is denoted
by a pair (p, I), such that p is a degree-bounded polynomial over a set of variables
x1, . . . , x2, collectively denoted by ~x, each of which ranges in an interval domain,
and I is an interval [5]. A continuous function f(~x) is overapproximated by a TM
(p(~x), [a, b]) over a domain D, if for all ~x0 ∈ D we have that p(~x0) + a ≤ f(~x0) ≤
p(~x0) + b. TMs can also be organized as vectors to provide overapproximations for
vector-valued functions.

Given an ODE
.
~x = f(~x) with an initial condition ~x(0) ∈ X0, the exact solution

is denoted by a flowmap ϕf such that ~x(t) = ϕf (~x0, t). In general, ϕf cannot be
obtained in a closed form. However, it can be tightly overapproximated by a TM
(p(~x0, t), I) of some order k > 0 over a small time step [0, δ]. Then the range of
(p(~x0, t), I) with ~x0 ∈ X0 and t ∈ [0, δ] forms an overapproximation of the reachable
set, i.e., all ODE solutions, in that time step. Such a TM is also called a flowpipe.
The technique to consecutively compute TM flowpipes is called TM integration
(see [6]). That is, each TM flowpipe (p(~x0, t), I) is an overapproximation of the
flowmap ~x(t) = ϕf (~x0, t0 + t) with ~x0 ∈ X0, t ∈ [0, δ] for some t0 ≥ 0 which is the
total amount of time covered by the previous flowpipes.

The main algorithm to compute TM flowpipes for the artificial pancreas model
is an adaption of the general flowpipe construction framework for hybrid sys-
tems [11]. We present it as Algorithm 1.

In each iteration of the main loop, the algorithm computes all flowpipes in a
control step and determine the dynamics for the next step based on the flowpipe
at the end of the current step along with the control strategy. It terminates when
the given maximum number of control steps are handled. The dynamics in each
step is an ODE that is derived from the control strategy shown in Figure 2. More
details are given as follows.

Computing flowpipes in a control step. The flowpipe construction in
each control step can be handled by the TM integration method, since the ODE
is fixed. We use the efficient integrator with adaptive time steps implemented in
Flow* [13]. Then, the flowpipe at the end of the control step can be easily evaluated
from the last flowpipe.

Deciding the dynamics for the next control step. Since the discrete
controller interferes the system only at the end of each control step, we only need to
update the dynamics at the end of a step. For the strategy presented in Figure 2,
our algorithm first evaluates the range of the glucose level G from the flowpipe Xδc ,
and then check the possibility of the insulin rates for the next step. It could be
possible that the range of G covers the conditions for several insulin rates. If so, we
subdivide the flowpipe Xδc according to those conditions and add each subdivision
with the new dynamics into the queue. There are various methods to subdivide
a TM flowpipe, we do it in the following way. Given a flowpipe Xδc whose range
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Algorithm 1 Flowpipe construction algorithm for the artificial pancreas model

Input: Initial set X0 of the model, initial dynamics D0, control stepsize δc, number of
control steps N .

Output: Overapproximation of the reachable set in N control steps.
1: R ← ∅; # set for resulting flowpipes
2: Enqueue 〈X0, 0,D0〉 to Queue; # Queue for new flowpipes
3: while Queue is not empty do
4: Dequeue a state set 〈X,n,D〉 from Queue;
5: Compute the flowpipes from X in the time interval [0, δc] under D;
6: Add the flowpipes to R;
7: Compute the flowpipe Xδc at the time δc;
8: Decide the possible dynamics D1, . . . ,Dm for the next control step;
9: if n < N then

10: for all i = 1, . . . ,m do
11: Reduce Xδc to Xi according to the condition of Di;
12: Enqueue 〈Xi, n+ 1,Di〉 to Queue; # Add a new flowpipe
13: end for
14: end if
15: end while
16: return R;

satisfies the conditions C1, . . . , Cm, then the subdivision Xi for the condition Ci
can be obtained from reducing Xδc according to Ci by domain contraction [12].

Theorem 1. Algorithm 1 returns an overapproximation of the reachable set of the
artificial pancreas model in N control steps.

We now consider the problem of incorporating a sensor error in the range
[−∆,∆] for each controller execution.

Sensor Noise. For a glucose value G0, the effect of sensor noise results in a
new value G′0 ∈ [G0 − ∆, G0 + ∆]. Given that the range of the glucose value is
overapproximated by a TM XG at the beginning of a control step, then a dynamics
D is possible in the next step if its condition C is satisfied by a glucose value
G′0 ∈ {G0 + u |G0 ∈ XG, u ∈ [−∆,∆]}. If so, we may further reduce the TM XG

properly according to C and add it along with D to the queue. More precisely, if
C is given by G ≤ a, we may reduce XG according to the constraint G ≤ a + ∆,
since any value larger than a + ∆ will not be deviated to a value below a by the
noise. The case of G ≥ a can be treated analogously.

Merging flowpipes. Subdivisions on flowpipes may lead to an explosion of the
sets in the queue. Therefore, we consider to merge flowpipes during the flowpipe
construction. When we enqueue a new flowpipe, we try to merge it with an existing
flowpipe in the queue. We say that two flowpipes are mergeable if they are the
reachable set overapproximations at the same time instance. In our work, we simply
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compute the merged flowpipe as an interval enclosure for the mergeable flowpipes.
Furthermore, since Algorithm 1 is performing a BFS exploration. Therefore, the
computation of reachable states at the (j + 1)th time step proceeds only after
performing all possible flowpipe merges at step j.

The effectiveness of our algorithms will be evaluated based on the experiments
given in the next section.

5 Experiments

We implemented the flowpipe construction algorithm for the artificial pancreas
model from Figure 2, by combining the piecewise quadratic meal model, the ODE
insulin glucose regulation model with the controller. Our model implements the
clinical scenario described in Section 3. The implementation is performed using
an C++ API provided by the Flow* tool. The API will be documented and made
available to developers in the near future. For the model checking, we consider the
time horizon of 720 minutes and a control step size 5 minutes, so there are totally
144 control steps along each computation path. In all tests, we use an adaptive
step size bounded by 0.2, a TM order of 3, cutoff threshold 10−8, and remainder
estimation [−0.01, 0.01].

We consider two different control strategies defined by sets of insulin rates.
Control strategy I uses the insulin rates (see figure 2):

i0 = 0.05, i1 = 0.1, i2 = 0.2, i3 = 0.5, i4 = 1.4 .

Figure 5 shows the flowpipes computed by our algorithm without any sensor
noise. The computation time required is 293 seconds. Figure 6 shows the flowpipes
that take a sensor noise with ∆ = 10 into account. The computation time required
is 313 seconds.

It is easily seen from the flowpipes that (a) hypoglycemia can never happen
under this clinical scenario since G ≥ 70 mg/dl holds in all situations, (b) the
flowpipes indicate the possibility of G ≥ 300 although simulations do not confirm
a violation, and (c) the wakeup blood glucose levels are not inside the euglycemia
range of [70, 180] mg/dl.

Next, we consider strategy II using the insulin rates

i0 = 0.1, i1 = 0.3, i2 = 0.7, i3 = 1.2, i4 = 1.5 .

The computed flowpipes without sensor noise are shown in Figure 7. The time cost
is 284 seconds. When a sensor noise of ∆ = 10 is added, we have the flowpipes
shown in Figure 8, the time cost is 323 seconds.

We conclude that using insulin rates given by strategy II, the overall control is
improved since G ≥ 70 mg/dl and G ≤ 300 mg/dl both hold. Nevertheless, the
property of wakeup euglycemia remains violated.

Challenge Problems: We conclude by observing that even though Flow*
tool can be used to systematically verify nonlinear mathematical models of insulin
glucose response, the overall challenge of systematically synthesizing control pa-
rameters i0, . . . , i4 to find values that can satisfy all three properties remains an
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Figure 5: Flowpipes and numerical simulations without sensor noise (Strategy I)

Figure 6: Flowpipes and numerical simulations with a sensor noise (Strategy I)
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Figure 7: Flowpipes and numerical simulations without sensor noise (Strategy II)

Figure 8: Flowpipes and numerical simulations with a sensor noise (Strategy II)
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open challenge for future verification efforts. Additionally, we may also consider
a rich set of temporal correctness properties and richer clinical scenarios involving
multiple meals. Finally, extending our approaches to the recently proposed exten-
sions of the Dalla-Man model to incorporate the effect of physical activity remains
part of our future work [38].

6 Conclusion

We present a model of artificial pancreas with a multi-basal controller. We propose
a new flowpipe construction algorithm to compute reachable set overapproxima-
tions for the controlled system. Although such a system has 10 continuous vari-
ables and involves a large number of control switches, our method can still prove
the safety for a challenging control strategy. In the future, we plan to study more
complex control strategies using relational abstraction [45] and decomposition [14].
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