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Abstract

The wind turbine benchmark, from the ARCH benchmark repository, originates from an
industrial model and entails closed-loop requirements that most verification tools have
difficulties evaluating. The benchmark incorporates nonlinear and hybrid dynamics. The
modeling is done with MATLAB/Simulink. To provide formal guarantees, we construct
a PWA model of the wind turbine. In this format, the model can be used by several
reachability tools for further analysis. The model transformation consists of three steps.
The first step is to translate the Simulink blocks to equivalent blocks in SX format. The
SL2SX translator facilitates with this task. The second step is to use a recently proposed
technique for conducting compositional, syntactic hybridization in order to approximate
the blocks that cannot be translated exactly into PWA dynamics. The third is a model
validation step to check that the individual approximations (base components) are correct
and non-blocking. We report some preliminary experiments on the subsystems (network
components) of the wind turbine that we conducted with SpaceEx.

1 Introduction

The benchmark was proposed by Simone Schuler, Fabiano Daher Adegas, and Adolfo Anta
from GE [7] in the ARCH workshop [2]. The authors proposed a simplified nonlinear model
of a wind turbine equipped with switching controllers. The composition of the wind turbine
and the controllers results in a hybrid system with nonlinear dynamics. The control synthesis
of this system along with the accompanied control objectives form a pertinent benchmark for
verification of requirements in hybrid systems [7].

This paper describes the process of constructing a PWA model expressed in SX format
from the original Simulink model of the wind turbine benchmark and presents preliminary
verification results undertaken with the SpaceEx tool [4]. The model transformation includes
three main steps. We first use the experimental tool (SL2SX) [6] to assist with the translation
and the process of building the SpaceEx model. Then, we conduct compositional syntactic
hybridization [5] to obtain an approximation of the dynamics of the nonlinear blocks and finally
we perform model validation.
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The rest of this paper is organized as follows. Section 2 reviews the existing tools that
are utilized. In Section 3, we briefly present the benchmark model. In Section 4, we describe
the model transformation process. We report some preliminary results in Section 5. We draw
conclusions and describe our future work in Section 6. The model and configuration files for
running the case study in SpaceEx are available as an attachment.

2 Background

In this section, we present the three tools that are used for the model transformation, namely,
Simulink, SpaceEx and SL2SX, and describe the hybridization technique that we apply.

2.1 Simulink

Simulink [1] is a graphical programming environment for modeling, simulating and analyzing
dynamical systems. It includes a set of block libraries and is commonly used in automatic
control and digital signal processing for multidomain simulation and Model-Based Design. A
Simulink model consists of a set of input and outputs variables, blocks and connections between
the blocks.

2.2 SpaceEx

SpaceEx [4] is a verification tool for hybrid systems. The goal is to verify (ensure beyond
reasonable doubt) that a given mathematical model of a hybrid system satisfies the desired
safety properties. It performs set-based reachability analysis and uses support functions as a
set representation. A SpaceEx model consists of components (base or network) and binds. Base
components correspond to single hybrid automata, whereas network components correspond to
the parallel composition of several hybrid automata. Bind is a relation that associates each
network component with a set of components. SpaceEx models respect the semantics of SX
grammar; the format is similar to the standard hybrid automata, syntactically extended with
hierarchy and templates.

2.3 Simulink to SpaceEx Translator (SL2SX)

SL2SX [6] is a semi-automated tool that undertakes the translation of Simulink models to
SpaceEx models. The translator accepts a Simulink model that is saved in XML format and
generates as an output a network of hybrid automata in SX format. The translation preserves
most of the structural aspects of the Simulink diagram, such as the names, hierarchy and
graphical positions.

2.4 Compositional Syntactic Hybridization

Compositional syntactic hybridization, a recently proposed method [5], is suitable for Simulink
models and takes advantage of the on-the-fly composition of hybrid systems that is supported by
the SpaceEx platform. The objective is to approximate in a compositional manner the original
nonlinear model with a hybrid automaton with PWA dynamics. Three main steps are involved:
syntactic decomposition, replacing the original system by an equivalent one with extra variables;
hybridization, constructing a PWA approximation for each domain and providing a sound over-
approximation of the original system by adding an error term; and finally HA composition,
where the PWA model is transformed into a hybrid automaton in SX format.



3 Benchmark Model

The wind turbine modeling is done with MATLAB and Simulink [7]. Figure 1 shows the top-
level model of the Simulink block diagram and Figure 2 depicts the physical part (plant) of the
wind turbine. It should be noted that the wind turbine dynamics are highly nonlinear functions
of the operating point defined by the rotor speed, wind speed and blade pitch angle.

Figure 1: Wind turbine - Simulink model - Top Level [7].

Figure 2: Wind turbine - Simulink model - Plant [7].

The plant consists of three subsystems: servo-elastic, aeroelastic and pitch-actuator. The
servo-elastic subsystem describes the tower fore-aft dynamics and the rotor dynamics. It is
interconnected with the aeroelastic subsystem through signals that correspond to the aerody-
namic torque and thrust. While the servo-elastic subsystem consists of linear operators, the
aeroelastic subsystem has a large number of nonlinear blocks. There are two Square functions,



two Products, two Divisions and two fourth-order Polynomials. The polynomials corre-
spond to the cP and cT coefficients, and they are computing through a regression model. The
pitch actuator dynamics can be expressed by a second-order lag, a first-order lag or time-delay.
The pitch actuator subsystem has two input signals, the demanded pitch angle and the pitch
actuator type and outputs the actual pitch angle to the aeroelastic subsystem. Apart from the
linear operators, it contains a Multiport Switch, three Compare to constant blocks, three
Enable blocks and three Enabled Subsystems.

As for the control design part, there is a generator-torque controller and a collective blade-
pitch controller. The blade pitch controller is a gain-scheduled PID whose objective is to
minimize the speed error between the filtered generator speed and the rated generator speed.
It incorporates an anti-windup scheme to prevent integration wind-up when the actuator is
saturated. The nonlinear blocks correspond to a Division and a Product. The generator-
torque controller aims to maximize the extracted maximum power from the wind by tracking
the optimal tip-speed ratio λopt. It is a hybrid controller with 5 locations, 2 input signals,
namely the filtered generator speed and the pitch angle. It is written as an Embedded MATLAB

Function and it includes two nonlinear operators, a Square and a Division.
Note that the benchmark model is designed with an industrial viewpoint and its verification

task is considered to be of high difficulty. That results from the existence of several nonlinearities
(over 10 distinct ones) and blocks that cannot be expressed by linear or hybrid dynamics. As
far as the model dimension is concerned, the controllers introduce two state variables and the
plant introduces 3-5 states (depending on the pitch actuation). As such, the total number of
state variables of the Simulink (closed-loop) model varies from 5 to 7. This number could be
further increased if the rate limiters and memory blocks are considered. The SpaceEx model
adds an extra variable to capture the time evolution. Another remark is that the Simulink
model has some extra functionalities with respect to the mathematical formulas presented in
the benchmark paper [7] (e.g. rate limiters). Finally, there are two minor remarks regarding
the benchmark model; some MATLAB paths that need to be modified and there is a call to a
toolbox (WAFO) that is not included in the benchmark files.

4 Model Transformation

This section presents the model transformation process, covering the translation, hybridization
and validation steps.

4.1 Translation

The first step of the model transformation is to translate the Simulink model to an equivalent1

SpaceEx model. However, it should be noted that not all Simulink blocks can be translated
exactly, as they cannot be expressed as hybrid automata. In this respect, before we start the
translation process, it is necessary to pre-process and modify the Simulink model. In fact, all
the Scopes, Mux, Demux, Enabled Subsystems, Manual Switches, Save to workspace have
to be deleted/replaced as their corresponding actions are defined in a different way with SX
format and SpaceEx. In addition, the Read from the workspace blocks and the discrete-time
user-defined signals are not particularly efficient and should be replaced. Considering the wind
disturbance (speed) block, one can observe that there are 33 possible combinations of user-
defined wind signals (aeromaps.mat). They are used to evaluate the performance of the wind

1Equivalent in the sense that the model remains the same while the syntax changes.



turbine under varying initial conditions and input signals. However, even if all these combi-
nations are tested, there is still no guarantee that the closed-loop system operates correctly.
Actually, there might be a different wind profile that could yield undesirable behaviors. On the
contrary, with SX format, this matter could be simply solved by adding a non-deterministic
input signal that covers the minimum and maximum wind speeds. It is also possible to im-
pose bounds on the wind speed derivative. Another modification concerns the three available
pitch actuation models that exist in the Simulink model. As for large wind turbines, the pitch
actuator dynamics cannot be neglected, we consider the most critical and representative case,
namely the second-order lag.

After modifying the Simulink blocks, we have to perform further pre-processing in order to
be able to use the SL2SX translator. Special attention should be given to the names and the
connections. As of version 1.0.1 of SL2SX, the block names should not extend to multiple lines,
as the respective blocks will not be parsed by the translator. Also, there may occur errors with
models that are saved in old Simulink versions.

Once the pre-processing is completed, we are ready to use the SL2SX translator. It should
be highlighted that having the mechanical aspects of the model translation carried out by a tool
significantly reduces errors. The translation takes a few seconds and produces an XML file with
18 Network Components and 89 Base Components. The Simulink blocks that are automatically
translated to base components are the following: Add, Subtract, Divide, Multiply, Constant,
Gain, Saturation, Integrator, Subsystem, Inport, Outport. The binds should be checked if they
are connected correctly. Also, for the current SL2SX version, the expressions ; &gt and ; &lt
should be manually replaced by < and > respectively2.

Finally, it is possible to make the SX model more compact by deleting the base components
that are duplicate and adding the appropriate binds. It should be noted that base components
that serve the same role, i.e. Sum, since the number of inputs or outputs may be different, as well
as the orientation of the corresponding ports may not be the same. With this configuration, the
total number of base components can be reduced approximately up to 30 distinct ones. Figure 3
and Figure 4 present the top level block (network component) and the plant subsystem of the
wind turbine model in SX format, as shown in the Model Editor of SpaceEx.

Figure 3: Wind turbine - SpaceEx model - Top Level.

2This a known problem with the SAX parser that the SL2SX translator calls.



Figure 4: Wind turbine - SpaceEx model - Plant.

4.2 Hybridization

The second step is to generate PWA approximations and describe them in SX format for the
Simulink blocks that cannot be handled automatically, either because no exact translation
is available (e.g. nonlinearities) or because translation cannot be applied (e.g. Embedded
MATLAB Function).

To obtain PWA approximations of nonlinear dynamics, we use an abstraction method known
as syntactic hybridization. This method essentially partitions the state-space into a set of do-
mains, and for each domain, it approximates the nonlinear dynamics by simpler ones with
added nondeterministic inputs to account for the abstraction error. However, instead of oper-
ating on the composed (flattened) system, we decompose the original dynamics and carry out
the state-space partitioning and PWA approximation on the components. In this way, we can
avoid having intractably large models and the explosion in the number of partitions can be
mitigated. In practice, we break down the nonlinear blocks into base components that have a
small number of input variables and interconnect them together.

A practical intermediate step is to compute an estimation of the range of the signals of the
blocks that shall be approximated, as it could result in more tractable approximation models.
That is the case as the smaller the range of the signals, the smaller the number of locations that
is required, given a desired error bound. The corresponding range is computed through Simulink
simulations. In fact, we observe the values of the block signals for different scenarios and initial
conditions. The resulting range is enlarged by a relative percentage. In case the range is shown
to be insufficient during reachability computations, it is further refined (enlarged). The degree
of enlargement is identified through visual inspection.

For the wind turbine benchmark, a number of simplifying assumptions has been consid-
ered. In particular, the constructed base components are designed to have only one or two
input signals and one output signal, the state space is partitioned into a set of non-overlapping
domains, described by hyper-rectangles (boxes), the approximations are linearized (first-order
Taylor) around the center of each domain, and the abstraction (linearization) error is computed
by the evaluation of the Lagrange remainder. All the computations (linearization domains,
quantization parameters, operating points, PWA approximations, errors) are conducted with
MATLAB. We also have a script to facilitate the integration of the constructed PWA approx-
imations, stored as MATLAB structures, with the main SpaxeEx XML file. More specifically,
we can automatically transform the MATLAB approximations into equivalent base components
models, described in SX format, and integrate all these components with the original XML file.

Note that the approximations can be conservative or non-conservative. The error is com-



puted for each location of the base components and is added as a non-deterministic input in the
corresponding invariants. However, it is possible to disregard the errors either for debugging
purposes or if the goal is to obtain a deterministic model. Table 1 presents all the Simulink
blocks that need to be approximated along with the approximation method, the maximum
induced errors and the number of locations of each approximation. Let us underscore that
the error corresponds to the maximum error that appears in one of the locations of the PWA
approximation. That means that the individual error in the other locations can be significantly
smaller.

No Block (Name)
Approximation

Method
Number of
Locations

Error
Bounds

Remarks

1
Product

(Anti windup)
syntactic 2x2 2 2 variables

2 Division (Cp/λ) syntactic 10
0.027613

2 var: (x/y)

3 Division (GS factor) syntactic 2
0.020111

1 var: 1
1+x

4 Division (λ) syntactic 4 0.6983
2 var: x/y
(ωR/vref )

5 Product (CT · v2ref ) syntactic 4 25.5781 x2 ∗ y
6 Product (Cp/λ · v2ref ) syntactic 4 3.23437 x2 ∗ y

7
Polynomial
(aeromaps)

syntactic 6 and 6
3.39472,
12.2809

two 4th-order
approx.

8 Embedded MATLAB syntactic 28
10.48584

x2 and 1/x.

9 Saturation substituted 3-4 0
exact translation

(add initially false)

10 Read from workspace substituted 1 -
non-deterministic

input

11 Mux, Scope unnecessary –

12 Save to workspace unnecessary –

13 Enabled Subsystem unnecessary –

14 Multiport Switch unnecessary –

15 Compare to Constant unnecessary –

16 Manual Switch unnecessary –

17 Rate Limiter ignored – DAE

18 Memory ignored – continuous delay

Total 15,482,880
upper bound
(worst case)

Table 1: SpaceEx base components - Approximations

To perform reachability analysis, SpaceEx performs on-the-fly composition of the hybrid
automata and instantiates only the reachable parts of the state-space. The upper bound of the
number of locations of the composed model is 16 millions3.

3Performing nonlinear simulation with SpaceEx could be beneficial, as we can arrive at a better estimate of
the numbers of locations that are actually reachable.



4.3 Model Validation

The third step of the model transformation concerns the model validation. We propose an
empirical method to evaluate whether the generated base components are correct, yield satis-
factory behaviors and do not introduce any deadlocks. In this step, we are essentially testing
the implementation in this step. In this vein, we have created an XML signal library with pre-
defined components that describe the trigonometric (sine & cosine), step and ramp functions.
We have added a monitor to visualize the output4. Once we create a new approximation, we
can integrate it with the XML library and obtain a tester SpaceEx module (consisting of base
and network components).

Our objective is twofold: on the one hand, to check that the approximation is non-blocking
and on the other hand to check that is indeed an over-approximation, in case the errors are
added. For the first objective, we select an input signal, typically a ramp function, which spans
the entire operating range. In practice, the input signal starts from the minimum allowed value
and reaches the maximum. Accordingly, the automaton should visit all of its locations and
then find a fixed point. For the second objective, we perform reachability analysis on the tester
module and then compare the results with random simulations. In this way, we check whether
the simulations are included in the reachable sets.

As an illustration, let us consider a Simulink block of the aero-elastic subsystem of the wind
turbine (plant). Figure 5 shows the entire aero-elastic subsystem. The block that we focus on
is the Divide block and it is highlighted in red.

Figure 5: Aero-elastic subsystem - Simulink - Nonlinear Divide block shown in red.

This block corresponds to the division operator and computes the division between two input
signals over time. From a physical point of view, it computes the tip-speed ratio, which is a
dimensionless variable denoted by lambda(λ). This block, being a nonlinear one, is replaced by
a PWA over-approximation with 4 locations. Figure 6 shows the approximation as a SpaceEx
base component.

The variables In1 and In2 relate to the inputs, Out1 is the PWA approximation of the
division operator In1/In2 and corresponds to λ. The approximation error w1 is added in the
form of a non-deterministic disturbance. Note that all the variables should be uncontrollable,
the error term is included in the invariance and it is described by a local variable.

4Note that STC and LGG scenarios in SpaceEx cannot output algebraic variables, so visualizing is possible
by mapping the algebraic variable to the solution of an ordinary differential equation.



Figure 6: Divide block - PWA approximation in SpaceEx.

After integrating the base component of the Divide block with our input library, we want
to check the previously mentioned objectives (no deadlocks and over-approximation). For this
reason, we consider that the inputs are ramp signals with varying initial conditions. The first
input is described by ˙In1==1 with initial conditions in 69 < In1 < 71 and the second input
by ˙In2==1 with initial conditions in 6.9 < In2 < 7.1. It is necessary to add a monitor in
order to visualize the output, as we intend to use the STC algorithm. Then, we perform
infinite-time reachability analysis with SpaceEx, a flowpipe tolerance of 0.1 and box directions.
SpaceEx finds a fixed point after 10 seconds and 4 iterations. It terminates after 10 seconds,
as In2 exceeds the maximum allowed value it can take. Finding a fixed point, after visiting its
locations, indicates that there is no deadlock.

Then, we compare the results with random simulations of the original nonlinear function
and we observe that for the considered scenario SpaceEx yields an over-approximation. The
tester module is shown in Figure 7a, the reachable sets and the simulation runs are shown in
7b. With blue the reachable sets of the approximate SpaceEx block are indicated, while with
red we specify the simulation runs of the nonlinear function. By visual inspection, it is evident
that the simulation runs are contained in the reachable sets.

(a) Tester - Division λ. (b) Reachable sets and Simulations.

Figure 7: SpaceEx Base Component - Division λ - Model Validation

The same approach (in a hierarchical way) is utilized in order to check that compositions
of multiple base components (over-approximations), network components or larger subsystems
operate correctly.



5 Preliminary Results

In this section, we present validation runs for some of the subsystems (network components).
We start with the pitch-actuator subsystem of the wind turbine plant. The input of this
block is the commanded pitch angle and the output is the actual pitch angle. Considering the
STC scenario, a global time horizon of 10s, and a constant input signal, we get a fixed point.
Figure 8 depicts the reachable sets for different initial conditions. The input signals are shown
in red and the output signals in blue.

(a) Initial Conditions - 0 ≤ θ ≤ 0.15. (b) Initial Conditions - 0.18 ≤ θ ≤ 0.22.

Figure 8: Pitch actuator - SpaceEx Network Component - Reachable Sets (blue: Output, red:
Input)

Next, we consider the servo-elastic subsystem of the wind turbine plant. Given constant
inputs, a global time horizon of 20s and the STC scenario, SpaceEx finds a fixed point. Figure
9 depicts the reachable sets for initial conditions: 0 ≤ Omega ≤ 0.1 and 0 ≤ xT dot ≤ 0.1.

(a) Output - Omega (b) Output - Displacement (xT dot).

Figure 9: Servo-elastic - SpaceEx Network Component - Reachable Sets



Finally, we analyze the torque controller. The approximation consists of 28 locations,
has two input signals (omega d, theta) and one output (torque). We consider the input signals
of Figure 11, as they cover the entire operating range (from minimum to maximum allowed
values). Indeed, with this configuration, SpaceEx visits all the controller locations and finds
a fixed point after 16 seconds. The reachable sets are computed with the PHAVer scenario.
PHAVer does not eliminate the algebraic constraints and it can be more suitable than STC
and LGG scenarios for visualizing algebraic outputs, such as the controller output. On the
downside, it leads to coarser over-approximations. The reachable sets of the torque controller
are displayed in Figure 10.

Figure 10: Torque Controller - SpaceEx Network Component - Output.

(a) Input 1 - Omega d. (b) Input 2 - Theta.

Figure 11: Torque Controller - SpaceEx Network Component - Inputs.



6 Conclusions

Model transformation plays an important role in bridging the gap between industrially rele-
vant models and verification tools. This work aims to assist the application of hybrid system
reachability tools to industrial-sized models described by MATLAB/Simulink. The existence
of a translator from Simulink to SpaceEx already facilitates the use of Simulink models within
SpaceEx environment. However, the large number of Simulink blocks and their diverse fea-
tures have posed difficulties mapping Simulink subsystems to SpaceEx components. That is
the case since there are several Simulink blocks that cannot be described by hybrid automata
with PWA dynamics and therefore cannot be processed by SpaceEx. In practice, most of these
blocks correspond to nonlinear functions and operations.

The wind turbine benchmark constitutes a relevant example, as it is an industrial case study
and includes more than 10 nonlinear blocks. Through syntactic hybridization, it is possible to
over-approximate the dynamical behavior of these blocks and seamlessly integrate them within
SpaceEx components. Note that the resulting model of hybrid automata is expressed in the
general SX format. As such, it can be fed directly into SpaceEx platform, or translated into
formats for other verification tools using the HyST [3] tool.

Our future work is targeted towards verifying the requirements of the wind turbine bench-
mark. As the proposed approximation contains around 15 million locations, there is a short-
coming concerning the computational costs and execution time. Currently, SpaceEx identifies
the initial locations of the approximation through enumeration, which does not scale. A po-
tential way to tackle this issue is to use compositional reasoning to identify the initial locations
and instantiate as few locations as possible during the analysis.
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