Contents

function [ xd, u, Nz, ps, Ny_r ] = controlledF16( t, x_f16,...
    xequil, uequil, K_lqr, F16_model, lin_f16, flightLimits, ctrlLimits,...
    autopilot)
% CONTROLLEDF16 Returns the LQR-controlled F-16 state derivatives and more
%   Function Call:
%       [ xd, u, Nz, ps, Ny_r ] = CONTROLLEDF16( t, x_f16,...
%           xequil, uequil, K_lqr, F16_model, lin_f16, ...
%           flightLimits, ctrlLimits, autopilot)
%
%   Inputs:
%       t       - time of step
%       x_f16   - F16 state vector (13+3 x 1) in rads, rads/sec, etc.
%       xequil  - trim states (13x1) in rads
%       uequil  - trim control (4x1) in degs
%       K_lqr   - linear quadratic regulator gain matrix (3x8)
%       F16_model - Optional string defining which function to use to
%           calculate state derivatives: {'morelli','stevens','linear'}.
%           Defaults to 'morelli'.
%       lin_f16 - Linear state space model of F-16 (req. only for 'linear')
%       ctrlLimits - struct of control limits
%
%   x_f16 states
%       x_f16(1)  = air speed, VT                            (ft/s)
%       x_f16(2)  = angle of attack, alpha                   (rad)
%       x_f16(3)  = angle of sideslip, beta                  (rad)
%       x_f16(4)  = roll angle, phi                          (rad)
%       x_f16(5)  = pitch angle, theta                       (rad)
%       x_f16(6)  = yaw angle, psi                           (rad)
%       x_f16(7)  = roll rate, P                             (rad/s)
%       x_f16(8)  = pitch rate, Q                            (rad/s)
%       x_f16(9)  = yaw rate, R                              (rad/s)
%       x_f16(10) = northward horizontal displacement, pn    (ft)
%       x_f16(11) = eastward horizontal displacement, pe     (ft)
%       x_f16(12) = altitude, h                              (ft)
%       x_f16(13) = engine thrust dynamics lag state, pow    (lbs)
%       ----------------------------------------------------------
%       x_f16(14) = Integral of Nz error, int_e_Nz           (g's)
%       x_f16(15) = Integral of Ps_error, int_e_ps           (rad/sec)
%       x_f16(16) = Integral of Ny_error, int_e_Ny_r         (g's)
%
%   Nonlinear f16 controls:
%       u(1) = throttle command     (0 to 1)
%       u(2) = elevator command     (deg)
%       u(3) = aileron command      (deg)
%       u(4) = rudder command       (deg)
%
%   LQR Controls:
%       u(1) = throttle command     (0 to 1)
%       u(2) = elevator command     (deg)
%       u(3) = aileron command      (deg)
%       u(4) = rudder command       (deg)
%       ------------------------------------
%       u(5) = Nz commanded         (g's)
%       u(6) = roll rate commanded  (deg/s)
%       u(7) = Ny+r commanded       (g's)
%
%   OUTPUT:
%       xd (16x1)   - units in [rad, rad/s, ft/s, ft, g's, etc...]
%
%
% <a href="https://github.com/pheidlauf/AeroBenchVV">AeroBenchVV</a>
% Copyright: GNU General Public License 2017
%
% See also: RUNF16SIM, GETAUTOPILOTCOMMANDS, BUILDLATERALLQRCTRL,
% BUILDLONGITUDINALLQRCTRL, ODE45

% Get Reference Control Vector (commanded Nz, ps, Ny+r, throttle)
u_ref = getAutopilotCommands(t, x_f16, xequil, uequil, ...
    flightLimits, ctrlLimits, autopilot, 0); % in g's & rads/sec

% Calculate perturbation from trim state
x_delta = x_f16 - [xequil; 0; 0; 0]; % in rads
Not enough input arguments.

Error in controlledF16 (line 68)
u_ref = getAutopilotCommands(t, x_f16, xequil, uequil, ...

Implement LQR Feedback Control

Reorder states to match controller: [alpha, q, int_e_Nz, beta, p, r, int_e_ps, int_e_Ny_r]

x_ctrl = x_delta([2 8 14 3 7 9 15 16]);

% Initialize control vectors
u_deg = zeros(4,1); % throt, ele, ail, rud
u = zeros(7,1);     % throt, ele, ail, rud, Nz_ref, ps_ref, Ny_r_ref

% Calculate control using LQR gains
% u_deg(2) = (-K_lqr(1,1:3)*x_ctrl(1:3)); % Longitudinal Control Only
% u_deg(3:4) = (-K_lqr(2:3,4:end)*x_ctrl(4:end)); % Lateral Control Only
u_deg(2:4) = -K_lqr*x_ctrl; % Full Control

% Set throttle as directed from output of getOuterLoopCtrl(...)
u_deg(1) = u_ref(4);

% Add in equilibrium control
u_deg(1:4) = u_deg(1:4) + uequil;

Limit controls to saturation limits (except for 'linear')

if(~strcmp(F16_model,'linear') && ~strcmp(F16_model,'fullLinear'))
    % Limit throttle from 0 to 1
    u_deg(1) = max(min(u_deg(1),ctrlLimits.ThrottleMax),...
        ctrlLimits.ThrottleMin);

    % Limit elevator from -25 to 25 deg
    u_deg(2) = max(min(u_deg(2),ctrlLimits.ElevatorMaxDeg),...
        ctrlLimits.ElevatorMinDeg);

    % Limit aileron from -21.5 to 21.5 deg
    u_deg(3) = max(min(u_deg(3),ctrlLimits.AileronMaxDeg),...
        ctrlLimits.AileronMinDeg);

    % Limit rudder from -30 to 30 deg
    u_deg(4) = max(min(u_deg(4),ctrlLimits.RudderMaxDeg),...
        ctrlLimits.RudderMinDeg);
end

Generate xd using user-defined method:

%   Note: Control vector (u) for subF16 is in units of degrees
if(strcmp(F16_model,'stevens'))
    % Uses lookup tables / interpolation to get state derivatives
    [xd, Nz, Ny] = subf16_stevens(x_f16(1:13), u_deg);
elseif(strcmp(F16_model,'morelli'))
    % Uses polynomial equations to get state derivatives
    [xd, Nz, Ny] = subf16_morelli(x_f16(1:13), u_deg);
elseif(strcmp(F16_model,'linear'))
    % Uses linear approximations to get state derivatives
    xd = lin_f16.a*x_f16(1:13)      + lin_f16.b*u_deg;
    % Uses polynomial equations to get down & side forces
    [~, Nz, Ny] = subf16_morelli(x_f16(1:13), u_deg);
elseif(strcmp(F16_model,'fullLinear'))
    warning('fullLinear not yet implemented correctly');
    % Uses linear approximations to get state derivatives
    xd = lin_f16.a*x_f16(1:13)      + lin_f16.b*u_deg;

    % Uses linear approximations to get down & side forces
    % TODO: Account for shift from CG to pilot??
    Nz = lin_f16.c(1,:)*x_f16(1:13) + lin_f16.d(1,:)*u_deg;
    Ny = lin_f16.c(6,:)*x_f16(1:13) + lin_f16.d(6,:)*u_deg;
else
   error('Unsupported F16_model requested')
end

% Calculate (Nonlinear) stability axis roll rate:
if(strcmp(F16_model,'linear') || strcmp(F16_model,'fullLinear'))
    % Linear (Approx):          ps = p            +     r*alpha
    ps = x_ctrl(5)*x_ctrl(1);
else
    % Nonlinear (Actual):       ps = p*cos(alpha) +     r*sin(alpha)
    ps = x_ctrl(5)*cos(x_ctrl(1)) + x_ctrl(6)*sin(x_ctrl(1));
end

% Calculate (side force + yaw rate) term
Ny_r = Ny + x_ctrl(6);

% Convert all degree values to radians for output
u(1) = u_deg(1);
u(2:4) = deg2rad(u_deg(2:4));
u(5:7) = u_ref(1:3);

% Add tracked error states to xd for integration
xd(14:16) = [Nz - u_ref(1); ps - u_ref(2); Ny_r - u_ref(3)];
end